福田のおもしろ数学050〜数学オリンピックの問題〜2変数関数の最小 - 質問解決D.B.(データベース)

福田のおもしろ数学050〜数学オリンピックの問題〜2変数関数の最小

問題文全文(内容文):
実数a,bが$a+b=17$を満たすとき$2^a+4^b$の最小値を求めよ

数学オリンピック過去問
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 福田次郎
問題文全文(内容文):
実数a,bが$a+b=17$を満たすとき$2^a+4^b$の最小値を求めよ

数学オリンピック過去問
投稿日:2024.02.13

<関連動画>

数学オリンピック予選

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#解と判別式・解と係数の関係#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
有理数係数の2次方程式
$ x^{2n}+a_1x^{2n-1}+a_2x^{2n-2}+$
$・・・・・・+a_{2n-1}x+a_{2n}=0$
の解はすべて$x^2+5x+7=0$の解にもなっている.
$a_1$の値を求めよ.
この動画を見る 

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
10!の正の約数dすべてについて
$\frac{1}{d+ \sqrt{10!} }$の合計
この動画を見る 

バングラデシュ数学オリンピック

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{cases}
x+y = 1 \\
x^5+y^5 = 31
\end{cases}
$

バングラデシュ数学オリンピック過去問
この動画を見る 

数学オリンピック予選問題

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_i(i=1$~$2n)$は有理数である.
$x^{2n}+a_1 x^{2n-1}+a_2 x^{2n-2}+・・・・+a_{2n-1}x+a_{2n}$
$=0$
の解はすべて$x^2+5x+7=0$の解にもなっている.$a_1$の値を求めよ.

数学オリンピック過去問
この動画を見る 

Japanese Mathematics Olympiad 2017

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1⃣
How many pairs of positive whole numbers (a,b)
such that ab=29! , a<b , a&b are coprime.

2⃣
How many sets of positive whole numbers (a,b,c,d,e)
such that all of them are different & a+b=c+d+e=29
この動画を見る 
PAGE TOP