【数C】【複素数平面】高次方程式3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】高次方程式3 ※問題文は概要欄

問題文全文(内容文):
方程式$z^6+z^3+1=0$の解を求めよ。ただし、解は 極形式のままでよい。
チャプター:

0:00 オープニング
0:04 まずはz³から求めてみる。
1:16 ここから 極形式を使います。場合分けその1から!
6:01 場合分けその2!
8:39 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$z^6+z^3+1=0$の解を求めよ。ただし、解は 極形式のままでよい。
投稿日:2025.03.09

<関連動画>

【高校数学】数Ⅲ-11 複素数の積の図表示③

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$z_1=\sqrt3+i,z_2=2+2i$のとき,積$z_1z_2$を図示せよ.

②$\dfrac{1+\sqrt3i}{1+i}$を複素数平面上に図示しよう.
この動画を見る 

01愛知県教員採用試験(数学:14番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$w,z:$複素数
$|w|=1$のとき$w=\bar{ (z-3)i }$をみたす$z$の軌跡を求めよ。
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数zに関する次の2つの方程式を考える。ただし、$\bar{ z }$はzと共役な複素数とし、
iを虚数単位とする。
$z\bar{ z }=4 \ldots\ldots$①     $|z|=|z-\sqrt3+i| \ldots\ldots②$

(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に
図示せよ。
(2)①、②の共通解となる複素数を全て求めよ。
(3)(2)で求めた全ての複素数の積をwとおく。このとき$w^n$が負の実数となる
ための整数nの必要十分条件を求めよ。

2022北海道大学理系過去問
この動画を見る 

北里大 複素数の総和

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=-1+i$
$\displaystyle \sum_{n=1}^{12} z^n$

出典:2014年北里大学 過去問
この動画を見る 

【短時間でマスター!!】複素数の計算を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
数学2B
①$(3-2i)+(2+5i)$
②$(3-2i)-(2+5i)$
③$(3-2i)(2+5i)$
$a+bi$の形にせよ。
①$\frac{1+3i}{3+i}$
②$\frac{1+2i}{3i}$
この動画を見る 
PAGE TOP