15東京都教員採用試験(数学:1-3 複素数) - 質問解決D.B.(データベース)

15東京都教員採用試験(数学:1-3 複素数)

問題文全文(内容文):
1⃣-(3)
$α、β \in \mathbb{ C }$
$α^2+αβ+β^2=0$ (α,β≠0)
$arg \frac{α}{β}$
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(3)
$α、β \in \mathbb{ C }$
$α^2+αβ+β^2=0$ (α,β≠0)
$arg \frac{α}{β}$
投稿日:2020.08.17

<関連動画>

福田の一夜漬け数学〜複素数平面(1)〜極形式と回転

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(練習)以下の式を極形式表示に直せ。ただし$0 \leqq \theta\leqq 2\pi$とする。
(1)$2-2i$
(2)$(2-2\sqrt3i)(i-1)$


$\alpha=1+i,\beta=3+2i$のとき、この2点を一辺とする正三角形の
残りの頂点を表す複素数を求めよ。
この動画を見る 

【数ⅢC】複素数平面の基本⑤複素数の積・商の考え方

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
$\cos\dfrac{2}{3}\pi-i\sin\dfrac{2}{3}\pi$
この動画を見る 

弘前大 三角関数 正十角形の面積 高校数学 大学入試 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#三角関数#複素数#三角関数とグラフ#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
(1)$sin5θ=16sin^5θ-20sin^3θ+5sinθ$を示せ。

(2)半径1の円に内接する正十角形の面積を求めよ。
この動画を見る 

中学生の知識でオイラーの公式を理解しよう Vol 7 弧度法 sinの微分

アイキャッチ画像
単元: #複素数平面#微分とその応用#複素数平面#色々な関数の導関数#数学(高校生)#数C#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式に関して解説していきます. Vol 7 弧度法 
この動画を見る 

福田の数学〜千葉大学2023年第8問〜iのn乗根Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{8}$ 実数$a$,$b$と虚数単位$i$を用いて複素数$z$が$z$=$a$+$bi$の形で表されるとき、$a$を$z$の実部、$b$を$z$の虚部と呼び、それぞれ$a$=$Re(z)$,$b$=$Im(z)$と表す。
(1)$z^3$=$i$を満たす複素数$z$をすべて求めよ。
(2)$z^{100}$=$i$を満たす複素数$z$のうち、$Re(z)$≦$\frac{1}{2}$かつ$Im(z)$≧0を満たすものの個数を求めよ。
(3)$n$を正の整数とする。$z^n$=$i$を満たす複素数$z$のうち、$Re(z)$≧$\frac{1}{2}$を満たすものの個数を$N$とする。$N$>$\frac{n}{3}$となるための$n$に関する必要十分条件を求めよ。
この動画を見る 
PAGE TOP