大阪市立大 漸化式 Japanese university entrance exam questions - 質問解決D.B.(データベース)

大阪市立大 漸化式 Japanese university entrance exam questions

問題文全文(内容文):
大阪市立大学過去問題
n自然数
$a_1 = 1 \quad a_{n+1}>a_n$
$(a_{n+1}-a_n)^2= a_{n+1}+a_n$
単元: #数列#漸化式#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
大阪市立大学過去問題
n自然数
$a_1 = 1 \quad a_{n+1}>a_n$
$(a_{n+1}-a_n)^2= a_{n+1}+a_n$
投稿日:2018.06.25

<関連動画>

2023久留米大(医)確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
無作為に1個取り出して戻すを繰り返す.
n回取り出したときの数の合計が3の倍数になる確率$P_{n}$を求めよ.

久留米大(医)過去問
この動画を見る 

【高校数学】等差数列の和の公式~理解したら簡単です~ 3-4【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等差数列の和の公式 解説動画です
この動画を見る 

08愛知県教員採用試験(数学:4番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$a_1=a_2=1,a_{n+2}=a_{n+1}+a_n$である.

$\displaystyle \lim_{ n \to \infty }\dfrac{a_{n-1}}{a_n}$の値を求めよ.
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

2重階乗 中央大附属 (誘導は動画内あり)動画の最後に。。。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nに対して $n! = n×(n-1)×(n-2)× \cdots ×3×2×1$
正の偶数mに対して$m!!= mx(m-2)×(m-4)× \cdots ×6×4×2$
(例)6!=6×5×4×3×2×1 , 6!! = 6×4×2
$(2k)!!$を$k!$を用いて表せ
(k:自然数)

2023中央大学付属高等学校 (改)
この動画を見る 
PAGE TOP