#秋田大学(2022) #定積分 #Shorts - 質問解決D.B.(データベース)

#秋田大学(2022) #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int_{-1}^{1} log(1+x^2) dx$

出典:2022年秋田大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} log(1+x^2) dx$

出典:2022年秋田大学
投稿日:2024.04.04

<関連動画>

九州大 係数三乗根の三次方程式の解の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \in \mathbb{R}(a$は実数$)$
$x^3-3\sqrt[ 3 ]{ 4-a^2 }x+2=0$
実数解の個数

出典:1964年九州大学 過去問
この動画を見る 

京都大 微分(超基本問題)高校数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2011京都大学過去問題
実数aが変化するとき、3次関数$y= x^3-4x^2+6x$、直線$y=x+a$のグラフの交点の個数はどのように変化するか。
aの値によって分類せよ。
この動画を見る 

大学入試問題#504「ひたすら積分」 #京都工芸繊維大学 (2012) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \frac{\displaystyle \int_{1}^{e} log(ax) dx}{\displaystyle \int_{1}^{e} x\ dx}=\displaystyle \int_{1}^{e}\displaystyle \frac{ log(ax)}{x} dx$を満たすとき
$log\ a$の値を求めよ。

出典:2012年京都工芸繊維大学 入試問題
この動画を見る 

#千葉大学2022#極限#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\sqrt{ n^2+n }-n)$

出典:2022年千葉大学
この動画を見る 

福田のわかった数学〜高校1年生034〜背理法(2)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 背理法(2)\\
\sqrt2,\sqrt[3]3が無理数であることを既知として次を証明せよ。\\
p,q,\sqrt2p+\sqrt[3]3qが全て有理数 \Rightarrow p=q=0
\end{eqnarray}
この動画を見る 
PAGE TOP