#秋田大学(2022) #定積分 #Shorts - 質問解決D.B.(データベース)

#秋田大学(2022) #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int_{-1}^{1} log(1+x^2) dx$

出典:2022年秋田大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} log(1+x^2) dx$

出典:2022年秋田大学
投稿日:2024.04.04

<関連動画>

数学「大学入試良問集」【14−13線分の長さの最小値】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
座標空間内で点$(3,4,0)$を通り、ベクトル$\vec{ a }=(1,1,1)$に平行な直線$l$、点$(2,-1,0)$を通り、ベクトル$\vec{ b }=(1,-2,0)$に平行な直線$m$とする。
点$P$は直線$l$上を、点$Q$は直線$m$上をそれぞれ勝手に動くとき、線分$PQ$の長さの最小値を求めよ。
この動画を見る 

合同式でさらっと 良問再投稿 弘前大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$5^{2n-1}+7^{2n-1}+23^{2n-1}$
35の倍数を示せ

(2)
$3^{3n-2}+5^{3n-1}$
7の倍数であることを示せ

出典:弘前大学 過去問
この動画を見る 

兵庫県立大 複素数の掛け算

アイキャッチ画像
単元: #兵庫県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022兵庫県立大学過去問題
a,b,c,dは整数
$a \geqq 0$,$a \geqq c$,$b \geqq d$
$(a+b\sqrt{5}i)(c+d\sqrt{5}i)=6$

①$(a^{2}+5b^{2})(c^{2}+5d^{2})=36$を示せ
②(a,b,c,d)の組をすべて求めよ
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(3)〜接線の本数と接点の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)$f(x)=(\log x)^2+2\log x+3$として、座標平面上の曲線$y=f(x)$を$C$とする。
ただし、$\log x$は$x$の自然対数を表し、$e$を自然対数の底とする。
$(\textrm{a})$関数$f(x)$は$x=\frac{\boxed{ソ}}{e}$のとき最小値$\boxed{タ}$をとる。
$(\textrm{b})$曲線Cの変曲点の座標は$(\boxed{チ},\ \boxed{ツ})$である。
$(\textrm{c})$直線$y=\boxed{ツ}$と曲線Cで囲まれた図形の面積は
$\frac{\boxed{テ}}{e^2}$である。
$(\textrm{d})a$を実数とする。曲線$C$の接線で、点$(0,\ a)$を通るものがちょうど1本あるとき、
aの値は$\boxed{ト}$である。
$(\textrm{e})b$を実数とする。曲線Cの2本の接線が点$(0,\ b)$で垂直に交わるとき、
bの値は$\frac{\boxed{ナ}}{\boxed{ニ}}$である。

2022明治大学理工学部過去問
この動画を見る 

【理数個別の過去問解説】2015年度京都大学 数学 文系第3問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
6個の点A,B,C,D,E,Fが右図のように長さ1の線分で結ばれているとする。
各線分 をそれぞれ独立に確率1/2で赤または黒で塗る。
赤く塗られた線分だけを通って 点Aから点Eにいたる経路がある場合はそのうちで最短のものの長さをXとする。 そのような経路がない場合はX=0とする。
このとき、n=0,2,4について、X=nとな る確率を求めよう。
この動画を見る 
PAGE TOP