学習院大 複素数 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

学習院大 複素数 Mathematics Japanese university entrance exam

問題文全文(内容文):
$\displaystyle \frac{Z-1-3i}{Z-2}$が純虚数であるような複素数$Z$について
$\vert Z \vert$の最大・最小を求めよ。

出典:2003年学習院大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{Z-1-3i}{Z-2}$が純虚数であるような複素数$Z$について
$\vert Z \vert$の最大・最小を求めよ。

出典:2003年学習院大学 過去問
投稿日:2019.02.12

<関連動画>

ナイスな連立4元三次方程式

アイキャッチ画像
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+bcd=30 \\\
b+acd=30 \\
c+abd=30 \\
d+abc=30
\end{array}
\right.
\end{eqnarray}$
を解け.
この動画を見る 

方程式を解け!!

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^3=(x-1)^3$を解け。
この動画を見る 

福田の数学〜九州大学2024年理系第2問〜複素数平面と高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 整式$f(z)$=$z^6$+$z^4$+$z^2$+1
について、以下の問いに答えよ。
(1)$f(z)$=0 を満たす全ての複素数$z$に対して、|$z$|=1 が成り立つことを示せ。
(2)次の条件を満たす複素数$w$を全て求めよ。
条件:$f(z)$=0 を満たす全ての複素数$z$に対して
$f(wz)$=0 が成り立つ。
この動画を見る 

3次不等式を解け

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数
指導講師: 数学を数楽に
この動画を見る 

練習問題11 20佐賀県教員採用試験(数学:複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$Z_1=4,Z_n=\dfrac{1}{4}(1+\sqrt3 i)Z_{n-1}$
点$Z_n(Z_n)$において
$\displaystyle \lim_{n\to\infty} \displaystyle \sum_{k=1}^{n} \triangle OZ_n Z_{n-1}$を求めよ.
この動画を見る 
PAGE TOP