問題文全文(内容文):
縦$x$、横$y$、高さ$z$の和が12、表面積が90であるような直方体を考える。
(1)$y+z$および$yz$を$x$の式で表せ。
(2)このような直方体が存在するための$x$の範囲を求めよ。
(3)このような直方体のうち体積が最大であるものを求めよ。
縦$x$、横$y$、高さ$z$の和が12、表面積が90であるような直方体を考える。
(1)$y+z$および$yz$を$x$の式で表せ。
(2)このような直方体が存在するための$x$の範囲を求めよ。
(3)このような直方体のうち体積が最大であるものを求めよ。
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#朝日大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
縦$x$、横$y$、高さ$z$の和が12、表面積が90であるような直方体を考える。
(1)$y+z$および$yz$を$x$の式で表せ。
(2)このような直方体が存在するための$x$の範囲を求めよ。
(3)このような直方体のうち体積が最大であるものを求めよ。
縦$x$、横$y$、高さ$z$の和が12、表面積が90であるような直方体を考える。
(1)$y+z$および$yz$を$x$の式で表せ。
(2)このような直方体が存在するための$x$の範囲を求めよ。
(3)このような直方体のうち体積が最大であるものを求めよ。
投稿日:2021.05.20