福田の数学〜早稲田大学2022年理工学部第1問〜2つの指数関数に囲まれた部分の面積と回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年理工学部第1問〜2つの指数関数に囲まれた部分の面積と回転体の体積

問題文全文(内容文):
${\large\boxed{1}}\ f(x)=3e^x-6,g(x)=e^{2x}-4e^x$とおく。
xy平面上の曲線$y=f(x)$をC、曲線$y=g(x)$をDとする。
以下の問いに答えよ。
(1)CとDの概形を一つのxy平面上に描け。
(2)CとDによって囲まれた部分の面積Sを求めよ。
(3)CとDによって囲まれた部分を、x軸の周りに1回転させてできる
立体の体積Vを求めよ。

2022早稲田大学理工学部過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}\ f(x)=3e^x-6,g(x)=e^{2x}-4e^x$とおく。
xy平面上の曲線$y=f(x)$をC、曲線$y=g(x)$をDとする。
以下の問いに答えよ。
(1)CとDの概形を一つのxy平面上に描け。
(2)CとDによって囲まれた部分の面積Sを求めよ。
(3)CとDによって囲まれた部分を、x軸の周りに1回転させてできる
立体の体積Vを求めよ。

2022早稲田大学理工学部過去問
投稿日:2022.07.25

<関連動画>

#高専#不定積分-1

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 4-x^2 }} dx$
この動画を見る 

大学入試問題#507「油断してると沼にはまりがち:良問」 長崎大学(2015) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{\tan\ x}{2-\cos\ 2x} dx$

出典:2015年長崎大学 入試問題
この動画を見る 

【高校数学】毎日積分46日目~②tan1/8π,tan3/8πを求めよ~【難易度:★★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{-\sqrt{2}}^{\sqrt{2}}\frac{8}{x^4+4}dx$
(2)$tan\frac{1}{8}π,tan\frac{3}{8}π$を求めよ
この動画を見る 

重積分⑧-3【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$∬_De^{-(x+y)^2}dxdy$
$D:x \geqq 0 , y \geqq 0 , x+y \leqq 1$
この動画を見る 

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=\cos^3x$ $(0 \leqq x \leqq \frac{\pi}{2})$,x軸およびy軸で囲まれる図形の面s系をS
とする。$0 \lt t \lt \frac{\pi}{2}$とし、C上の点Q$(t,\cos^3t)$と原点O,およびP$(t,o),R(0,\cos^3t)$
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。
(1)Sを求めよ。
(2)$f(t)$は最大値をただ一つのtでとることを示せ。そのときのtを$\alpha$とすると、
$f(\alpha)=\frac{\cos^4\alpha}{3\sin\alpha}$ であることを示せ。
(3)$\frac{f(\alpha)}{S} \lt \frac{9}{16}$ を示せ。

2022京都大学理系過去問
この動画を見る 
PAGE TOP