#東京理科大学2023#定積分#ますただ - 質問解決D.B.(データベース)

#東京理科大学2023#定積分#ますただ

問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ e }} \displaystyle \frac{e}{x^2+e} dx$

出典:2023年東京理科大学
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ e }} \displaystyle \frac{e}{x^2+e} dx$

出典:2023年東京理科大学
投稿日:2024.07.27

<関連動画>

#高専_8#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{x^3}{x-1}$ $dx$
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第5問〜2次関数の区間の動く最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ aを実数とする。関数\hspace{260pt}\\
f(x)=-x^2+6x\hspace{30pt}(a-2 \leqq x \leqq a)\hspace{130pt}\\
の最大値をg(a)、最小値をh(a)とする。このとき、\hspace{140pt}\\
ab平面においてb=g(a)のグラフとa軸によって囲まれる部分の面積は\boxed{\ \ ア\ \ }であり、\\
ab平面においてb=h(a)のグラフとa軸によって囲まれる部分の面積は\boxed{\ \ イ\ \ }である。
\end{eqnarray}

2022早稲田大学人間科学部過去問
この動画を見る 

【短時間でポイントチェック!!】定積分の基礎〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\int_{-1}^2(x^2-6x+1)dx$
この動画を見る 

福田の数学〜明治大学2022年理工学部第3問〜平行六面体の対角線を軸とした回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#微分法と積分法#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、\\
すべての辺の長さは1であり、\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }のどの\\
2つのなす角も\frac{\pi}{3}であるとする。\\
(1)\overrightarrow{ OF }を\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }を用いて表すと、\overrightarrow{ OF }= \boxed{\ \ き\ \ }である。\\
(2)|\overrightarrow{ OF }|,\ \cos \angle AOFを求めると|\overrightarrow{ OF }|= \boxed{\ \ く\ \ },\ \cos \angle AOF=\boxed{\ \ け\ \ }である。\\
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して\\
できる円錐の体積は\boxed{\ \ こ\ \ }である。\\
(4)対角線OF上に点Pをとり、|\overrightarrow{ OP }|=tとおく。点Pを通り、\overrightarrow{ OF }に垂直な平面\\
をHとする。平行六面体OABC-DEFGを平面Hで切った時の断面が六角形\\
となるようなtの範囲は\boxed{\ \ さ\ \ }である。このとき、平面Hと辺AEの交点をQ\\
として、|\overrightarrow{ AQ }|をtの式で表すと|\overrightarrow{ AQ }|=\boxed{\ \ し\ \ }である。また、|\overrightarrow{ PQ }|^2をtの式で表すと\\
|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{\ \ す\ \ }\\
である。\\
(5)平行六面体OABC-DEFGを、直線OFの周りに1回転してできる回転体\\
の体積は\boxed{\ \ こ\ \ }である。
\end{eqnarray}

2022明治大学理工学部過去問
この動画を見る 

#電気通信大学2015#区分求積法#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^2}\displaystyle \sum_{k=1}^n k \sin\displaystyle \frac{k\pi}{2n}$

出典:2015年電気通信大学
この動画を見る 
PAGE TOP