福田の数学〜早稲田大学2023年人間科学部第7問〜空間ベクトルと回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年人間科学部第7問〜空間ベクトルと回転体の体積

問題文全文(内容文):
$\Large\boxed{7}$ 座標空間に点C(0,1,1)を中心とする半径1の球面Sがある。点P(0,0,3)からSに引いた接線と$xy$平面との交点をQとする。$\overrightarrow{PC}・\overrightarrow{PQ}$=$t|\overrightarrow{PQ}|$と表すとき、
$t$=$\boxed{\ \ テ \ \ }$である。点Qは楕円状にあり、この楕円を
$\displaystyle\frac{(x+b)^2}{a}$+$\displaystyle\frac{(y+d)^2}{c}$=1
とするとき、$a$=$\boxed{\ \ ト\ \ }$, $b$=$\boxed{\ \ ナ\ \ }$, $c$=$\boxed{\ \ ニ\ \ }$, $d$=$\boxed{\ \ ヌ\ \ }$ である。
また、点Pに光源があるとき、球面Sで光が当たる部分を点Rが動く。ただし、
球面Sは光を通さない。このとき線分PRが通過してできる図形の体積は
2$\pi$・$\displaystyle\frac{\boxed{ネ}+\boxed{ノ}\sqrt{\boxed{ハ}}}{\boxed{ヒ}}$
である。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 座標空間に点C(0,1,1)を中心とする半径1の球面Sがある。点P(0,0,3)からSに引いた接線と$xy$平面との交点をQとする。$\overrightarrow{PC}・\overrightarrow{PQ}$=$t|\overrightarrow{PQ}|$と表すとき、
$t$=$\boxed{\ \ テ \ \ }$である。点Qは楕円状にあり、この楕円を
$\displaystyle\frac{(x+b)^2}{a}$+$\displaystyle\frac{(y+d)^2}{c}$=1
とするとき、$a$=$\boxed{\ \ ト\ \ }$, $b$=$\boxed{\ \ ナ\ \ }$, $c$=$\boxed{\ \ ニ\ \ }$, $d$=$\boxed{\ \ ヌ\ \ }$ である。
また、点Pに光源があるとき、球面Sで光が当たる部分を点Rが動く。ただし、
球面Sは光を通さない。このとき線分PRが通過してできる図形の体積は
2$\pi$・$\displaystyle\frac{\boxed{ネ}+\boxed{ノ}\sqrt{\boxed{ハ}}}{\boxed{ヒ}}$
である。
投稿日:2023.08.21

<関連動画>

【高校数学】 数B-43 空間ベクトルの内積③

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①4点$A(8,2,-3),B(1,3,2),C(5,1,8),D(3,-3,6)$を頂点とする
四面体$ABCD$がある.$AB\perp BC,AB\perp BD$であることを示し,
四面体$ABCD$の体積を求めよう.

②4点$0(0,0,0),A(4,0,2),B(3,3,3),C(3,0,4)$を頂点とする
四面体$OABC$の体積を求めよう.
この動画を見る 

数学「大学入試良問集」【14−11空間ベクトルと正四面体】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
四面体$OABC$の辺$AB$を$4:5$に内分する点を$D$、辺$OC$を$2:1$に内分する点を$E$とし、線分$DE$の中点を$P$、直線$OP$が平面$ABC$と交わる点を$Q$とする。
次の各問いに答えよ。
(1)
$\overrightarrow{ OA }=\vec{ a },\ \overrightarrow{ OB }=\vec{ b },\ \overrightarrow{ OC }=\vec{ c }$とおくとき、$\overrightarrow{ OP }$を$\vec{ a },\ \vec{ b },\ \vec{ c }$で表せ。
また、$\overrightarrow{ OP }$と$\overrightarrow{ OQ }$の大きさの比$|\overrightarrow{ OP }|:|\overrightarrow{ OQ }|$を最も簡単な整数比で表せ。

(2)
$\triangle ABQ$と$\triangle ABC$の面積比$\triangle ABQ:\triangle ABC$を最も簡単な整数比で表せ。
この動画を見る 

【数C】ベクトル:二点を通る直線・空間版

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-2,1,-1)とB(1,3,2)を通る直線の方程式を求めよ。変数x,y,zを用いて表せ。
この動画を見る 

【数C】空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。
この動画を見る 

【数C】【空間ベクトル】大きさが2で,x軸の正の向きとなす角が45°、y軸の正の向きとなす角が60°であるような空間ベクトルを成分表示せよ。また,そのベクトルがz軸の正の向きとなす角は何度か。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
大きさが2で,x軸の正の向きとなす角が45°、y軸の正の向きとなす角が60°であるような空間ベクトルを成分表示せよ。また,そのベクトルがz軸の正の向きとなす角は何度か。
この動画を見る 
PAGE TOP