立命館大 面積公式は導きながら使おう - 質問解決D.B.(データベース)

立命館大 面積公式は導きながら使おう

問題文全文(内容文):
2021立命館大学過去問題
放物線$C:y=x^2-2x+2$
C上の2点A,BにP(t,0)から接線を引く
①直線ABの方程式をtを用いて表せ
②放物線Cと直線AP,BPとで囲まれる面積の最小値
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#立命館大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021立命館大学過去問題
放物線$C:y=x^2-2x+2$
C上の2点A,BにP(t,0)から接線を引く
①直線ABの方程式をtを用いて表せ
②放物線Cと直線AP,BPとで囲まれる面積の最小値
投稿日:2023.06.29

<関連動画>

福田の数学〜名古屋大学2023年理系第2問〜回転体の体積と関数の増減と最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#面積、体積#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<b<a とする。xy平面において、原点を中心とする半径rの円Cと点(a, 0)を中心とする半径bの円Dが2点で交わっている。
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
$\displaystyle\lim_{a \to \infty}(r(a)-a)$を求めよ。

2023名古屋大学理系過去問
この動画を見る 

【数Ⅱ】積分法:2次関数の面積を半分にする1次関数

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=-x(x-6)とx軸で囲まれた図形の面積を、直線y=mxが2等分するとき、定数mの値を求めよう。
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(4)〜3次関数のグラフの回転と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(4)3次関数f(x)は、x=1で極大値5をとり、x=2で極小値4をとる。
関数$f(x)(x \geqq 0)$のグラフを、原点を中心に時計回りに
θ回転して得られる図形を$C(θ)$とする。
ただし、$0 \lt θ \lt \pi$とする。$C(θ)$と$x$軸の共有点が相異なる3点であるとき、
それらを$x$座標の小さい順に$P_θ,Q_θ,R_θ$とする。線分$Q_θR_θ$と$C(θ)$で
囲まれた部分の面積が$\frac{81}{32}$であるとき、$Q_θ$の$x$座標は$\boxed{\ \ エ\ \ }$である。

2022早稲田大学商学部過去問
この動画を見る 

19神奈川県教員採用試験(数学:面積の最小値)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#その他#数学(高校生)#その他
指導講師: ますただ
問題文全文(内容文):
$y=x^2-5x+4$と$y=m(n-2)$で囲まれた面積の最小値とそのときの$m$の値を求めよ.

19神奈川県教員採用試験(数学:面積の最小値)過去問
この動画を見る 

高専数学 微積I #207 体積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
点$x(0\lt x\lt \pi)$で$x$軸に垂直な平面で切った切り口が,
辺の長さが$x,\sin x$の長方形である立体の体積$V$を求めよ.
この動画を見る 
PAGE TOP