問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 平均値の定理(1)\\
0 \lt a \lt b のとき\\
1-\frac{a}{b} \lt \log b-\log a \lt \frac{b}{a}-1\\
を証明せよ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{III} 平均値の定理(1)\\
0 \lt a \lt b のとき\\
1-\frac{a}{b} \lt \log b-\log a \lt \frac{b}{a}-1\\
を証明せよ。
\end{eqnarray}
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 平均値の定理(1)\\
0 \lt a \lt b のとき\\
1-\frac{a}{b} \lt \log b-\log a \lt \frac{b}{a}-1\\
を証明せよ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{III} 平均値の定理(1)\\
0 \lt a \lt b のとき\\
1-\frac{a}{b} \lt \log b-\log a \lt \frac{b}{a}-1\\
を証明せよ。
\end{eqnarray}
投稿日:2021.09.11