福田の数学〜慶應義塾大学2024年経済学部第3問〜指数関数で定義された数列の漸化式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年経済学部第3問〜指数関数で定義された数列の漸化式

問題文全文(内容文):
3 実数aに対してf(a)=12(2a2a)とおく。また、A=2aとする。
(1)等式(A1A)3=    (A1A)3    (A1A) より、実数aに対して
{f(a)}3=        f(3a)        f(a) ...①が成り立つ。
(2)実数a,bに対してf(a)=bが成り立つならば、A=2aは2次方程式
A2    bA    =0
を満たす。2a>0より、abを用いて
a=log2(    b+b2+    ) ...②
と表せる。つまり、任意の実数bに対してf(a)=bとなる実数aが、ただ1つに定まる。
以下、数列{an}に対してf(an)=bn (n=1,2,3,...)で定まる数列{bn}が、関係式
4bn+13+3bn+1bn=0 (n=1,2,3,...) ...③
を満たすとする。
(3)①と③からf(    an+1)=f(an) (n=1,2,3,...)となるので、(2)より、
an=a1    np (n=1,2,3,...)が得られる。ここで、p=    である。
(4)n≧2に対して、Sn=k=2n3k1bk3 とおく。cn=3nbn (n=1,2,3,...)で定まる数列{cn}の階差数列を用いると、③より、
Sn=        b1    n    bn (n=2,3,4,...)
となる。ゆえに、b1=43S5-108 が成り立つならばa1=    log2     である。
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3 実数aに対してf(a)=12(2a2a)とおく。また、A=2aとする。
(1)等式(A1A)3=    (A1A)3    (A1A) より、実数aに対して
{f(a)}3=        f(3a)        f(a) ...①が成り立つ。
(2)実数a,bに対してf(a)=bが成り立つならば、A=2aは2次方程式
A2    bA    =0
を満たす。2a>0より、abを用いて
a=log2(    b+b2+    ) ...②
と表せる。つまり、任意の実数bに対してf(a)=bとなる実数aが、ただ1つに定まる。
以下、数列{an}に対してf(an)=bn (n=1,2,3,...)で定まる数列{bn}が、関係式
4bn+13+3bn+1bn=0 (n=1,2,3,...) ...③
を満たすとする。
(3)①と③からf(    an+1)=f(an) (n=1,2,3,...)となるので、(2)より、
an=a1    np (n=1,2,3,...)が得られる。ここで、p=    である。
(4)n≧2に対して、Sn=k=2n3k1bk3 とおく。cn=3nbn (n=1,2,3,...)で定まる数列{cn}の階差数列を用いると、③より、
Sn=        b1    n    bn (n=2,3,4,...)
となる。ゆえに、b1=43S5-108 が成り立つならばa1=    log2     である。
投稿日:2024.06.30

<関連動画>

指数のフシギ〜お小遣いの悪魔の交渉術!? #高校数学 #指数 #数列 #shorts

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
指数のフシギ〜お小遣いの悪魔の交渉術!?
この動画を見る 

【短時間でポイントチェック!!】指数の計算の基礎(数1・化学でも使える)〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
a2×a9÷a5
a12×a23
{(2516)54}25
34×35÷36
85×324÷27
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第1問〜三角関数、指数関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
[1](1)次の問題Aについて考えよう。
A y=sinθ+3cosθ(0θπ2)$

sinπ    =32, cosπ    =12
であるから、三角関数の合成により

y=    sin(θ+π    )

と変形できる。よって、yθ=π    で最大値      をとる。

(2)pを定数とし、次の問題Bについて考えよう。
B y=sinθ+pcosθ(0θπ2)

(i) p=0のとき、yθ=π    で最大値      をとる。
(ii) p>0のときは、加法定理
cos(θα)=cosθcosα+sinθsinα
を用いると
y=sinθ+pcosθ=    cos(θα)
と表すことができる。ただし、α
sinα=        cosα=        0<α<π2
を満たすものとする。このとき、yθ=    で最大値
    をとる。

(iii) p<0のとき、yθ=    で最大値    をとる。

                の解答群(同じものを繰り返
し選んでもよい。)
1
1
p
p
1p
1+p
p2
p2
1p2
1+p2
(1p)2
(1+p)2


        の解答群(同じものを繰り返し選んでもよい。)
0
α
π2


[2]二つの関数f(x)=2x+2x2g(x)=2x2x2 について考える。

(1)f(0)=    g(0)=    である。また、f(x)は相加平均
と相乗平均の関係から、x=    で最小値      をとる。
g(x)=2 となるxの値はlog2(        )である。

(3)次の①~④は、xにどのような値を代入しても常に成り立つ。
f(x)=     
g(x)=     
{f(x)}2{g(x)}2=     
g(2x)=     f(x)g(x) 

        の解答群(同じものを繰り返し選んでもよい。)
f(x)
f(x)
g(x)
g(x)


(3)花子さんと太郎さんは、f(x)g(x)の性質について話している。

花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式(A)~(D)を考えてみたけど、
常に成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式(A)~(D)のβに何か具体
的な値を代入して調べてみたらどうかな。

太郎さんが考えた式
f(αβ)=f(α)g(β)+g(α)f(β) (A)
f(α+β)=f(α)f(β)+g(α)g(β) (B)
g(αβ)=f(α)f(β)+g(α)g(β) (C)
g(α+β)=f(α)g(β)g(α)f(β) (D)


(1),(2)で示されたことのいくつかを利用すると、式(A)~(D)のうち、
    以外の三つは成り立たないことが分かる。    は左辺と右辺
をそれぞれ計算することによって成り立つことが確かめられる。

    の解答群
(A)
(B)
(C)
(D)

2021共通テスト過去問
この動画を見る 

1963の1963乗を10で割った余りは? 2024中央大附属

アイキャッチ画像
単元: #数Ⅱ#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
19631963を10で割った余りを求めよ
2024中央大学附属高等学校
この動画を見る 

変な指数方程式

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.xは正の実数である.
xx6=27
この動画を見る 
PAGE TOP preload imagepreload image