問題文全文(内容文):
実数 に対して = とおく。また、 = とする。
(1)等式 = - より、実数 に対して
= - ...①が成り立つ。
(2)実数 , に対して = が成り立つならば、 = は2次方程式
- - =0
を満たす。 >0より、 は を用いて
= ...②
と表せる。つまり、任意の実数bに対して = となる実数 が、ただ1つに定まる。
以下、数列 に対して = ( =1,2,3,...)で定まる数列 が、関係式
+ - =0 ( =1,2,3,...) ...③
を満たすとする。
(3)①と③から = ( =1,2,3,...)となるので、(2)より、
= ( =1,2,3,...)が得られる。ここで、 = である。
(4) ≧2に対して、 = とおく。 = ( =1,2,3,...)で定まる数列 の階差数列を用いると、③より、
= - ( =2,3,4,...)
となる。ゆえに、 = -108 が成り立つならば = である。
(1)等式
(2)実数
を満たす。
と表せる。つまり、任意の実数bに対して
以下、数列
を満たすとする。
(3)①と③から
(4)
となる。ゆえに、
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
実数 に対して = とおく。また、 = とする。
(1)等式 = - より、実数 に対して
= - ...①が成り立つ。
(2)実数 , に対して = が成り立つならば、 = は2次方程式
- - =0
を満たす。 >0より、 は を用いて
= ...②
と表せる。つまり、任意の実数bに対して = となる実数 が、ただ1つに定まる。
以下、数列 に対して = ( =1,2,3,...)で定まる数列 が、関係式
+ - =0 ( =1,2,3,...) ...③
を満たすとする。
(3)①と③から = ( =1,2,3,...)となるので、(2)より、
= ( =1,2,3,...)が得られる。ここで、 = である。
(4) ≧2に対して、 = とおく。 = ( =1,2,3,...)で定まる数列 の階差数列を用いると、③より、
= - ( =2,3,4,...)
となる。ゆえに、 = -108 が成り立つならば = である。
(1)等式
(2)実数
を満たす。
と表せる。つまり、任意の実数bに対して
以下、数列
を満たすとする。
(3)①と③から
(4)
となる。ゆえに、
投稿日:2024.06.30