【高校数学】数Ⅰ-34 命題⑧ - 質問解決D.B.(データベース)

【高校数学】数Ⅰ-34 命題⑧

問題文全文(内容文):
◎次の等式を満たす有理数x,yの値を求めよう。
①$(3+2\sqrt{ 3 })x-(2-\sqrt{ 3 })y+1-4\sqrt{ 3 }=0$

②$\displaystyle \frac{7+x\sqrt{ 3 }}{2+\sqrt{ 3 }}=y+9\sqrt{ 3 }$
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式を満たす有理数x,yの値を求めよう。
①$(3+2\sqrt{ 3 })x-(2-\sqrt{ 3 })y+1-4\sqrt{ 3 }=0$

②$\displaystyle \frac{7+x\sqrt{ 3 }}{2+\sqrt{ 3 }}=y+9\sqrt{ 3 }$
投稿日:2014.07.23

<関連動画>

「二次関数の最大最小②」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)$y=(x^2-6x)^2+2(x^2-6x)-1$の最小値を求めよ。
(2)$y=(x^2-6x)^2+2(x^2-6x)-1(1 \leqq x \leqq 4)$の最大値と最小値を求めよ。
(3)$x \geqq 0,y \geqq 0x+y=1$のとき、$3x^2+y^2$の最大値と最小値を求めよ。
(4)実数$x,y$について$P=x^2+3y^2-2x+10y+4$の最小値を求めよ。
(5)実数$x,y$について$P=x^2-2xy+3y^2-2x+10y+4$の最小値を求めよ。
この動画を見る 

福田のわかった数学〜高校1年生046〜三角形への応用(3)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 三角形への応用(3)
右の図(※動画参照)において、$I$は$\triangle ABC$の内心である。$AB=5,\ BC=10$
$CA=7$のとき、$AR,\ IR$を求めよ。
この動画を見る 

【短時間でマスター!!】2次関数のグラフの書き方を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅰ#2次関数#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
2次関数のグラフの書き方を解説します。
$y=x^2+2x-1$
①$-3≦x≦0$
②$0≦x≦2$の最大・最小
この動画を見る 

等式の変形 國學院久我山

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xについて解け
$\frac{bx}{1+a(b+x)}=1$ $(a \neq b)$

國學院大學久我山高等学校
この動画を見る 

2022年東京大 (理系)最初の一問!!

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$f(x)=(cosx)log(cosx) -cosx + \int_0^x(cost)log(cost)dt$
f(x)は区間$0<x< \frac{π}{2}$において最小値を持つことを示し、その最小値を求めよ。

2022東京大学理系問題文改め
この動画を見る 
PAGE TOP