問題文全文(内容文):
$|\vec{ a }|=2\sqrt{ 5 },|\vec{ b }|=\sqrt{ 5 },$ $|\vec{ a }+2\vec{ b }|=2\sqrt{ 5 }$のとき、ベクトル$\vec{ a },\vec{ b }$のなす角$\theta$を求めよ。
$|\vec{ a }|=2\sqrt{ 5 },|\vec{ b }|=\sqrt{ 5 },$ $|\vec{ a }+2\vec{ b }|=2\sqrt{ 5 }$のとき、ベクトル$\vec{ a },\vec{ b }$のなす角$\theta$を求めよ。
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$|\vec{ a }|=2\sqrt{ 5 },|\vec{ b }|=\sqrt{ 5 },$ $|\vec{ a }+2\vec{ b }|=2\sqrt{ 5 }$のとき、ベクトル$\vec{ a },\vec{ b }$のなす角$\theta$を求めよ。
$|\vec{ a }|=2\sqrt{ 5 },|\vec{ b }|=\sqrt{ 5 },$ $|\vec{ a }+2\vec{ b }|=2\sqrt{ 5 }$のとき、ベクトル$\vec{ a },\vec{ b }$のなす角$\theta$を求めよ。
投稿日:2022.01.14