【数Ⅲ-163】区分求積法② - 質問解決D.B.(データベース)

【数Ⅲ-163】区分求積法②

問題文全文(内容文):
数Ⅲ(微分求積法②)

Q.次の極限値を求めよ。

①$\displaystyle \lim_{ n \to \infty } (\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n})$
➁$\displaystyle \lim_{ n \to \infty } (\frac{1}{n\sqrt{n}})(\sqrt{2}+\sqrt{4}+…+\sqrt{2n})$
③$\displaystyle \lim_{ n \to \infty }\frac{\pi}{n} \sum_{k=1}^{n}\cos^2\frac{k\pi}{6n}$
単元: #数学(中学生)#積分とその応用#面積・体積・長さ・速度#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分求積法②)

Q.次の極限値を求めよ。

①$\displaystyle \lim_{ n \to \infty } (\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n})$
➁$\displaystyle \lim_{ n \to \infty } (\frac{1}{n\sqrt{n}})(\sqrt{2}+\sqrt{4}+…+\sqrt{2n})$
③$\displaystyle \lim_{ n \to \infty }\frac{\pi}{n} \sum_{k=1}^{n}\cos^2\frac{k\pi}{6n}$
投稿日:2020.08.06

<関連動画>

【高校数学】毎日積分8日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_1^e5^{\log x}dx$
これを解け.
この動画を見る 

#高専_2#定積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (1-\sin^3x)\cos x$ $dx$
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$直線$x+y=1$に接する楕円$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a \gt 0,\ b \gt 0)$がある。
このとき、$b^2=\boxed{\ \ ア\ \ }\ a^2+\boxed{\ \ イ\ \ }$である。
この楕円を直線$y=b$のまわりに1回転してできる立体の体積は、
$a=\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$のとき、
最大値$\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}\pi^2$をとる。

2022早稲田大学人間科学部過去問
この動画を見る 

大学入試問題#350「見た目とのギャップ」 岩手医科大学2019 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\sqrt{ 3 }}{2}} \displaystyle \frac{dx}{(1-x^2)^2}$

出典:2019年岩手医科大学 入試問題
この動画を見る 

数学「大学入試良問集」【19−9 定積分と不等式の証明】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
$0 \leqq x \leqq \displaystyle \frac{\pi}{2}$のとき、次の不等式が成り立つことを証明せよ。
$\displaystyle \frac{2x}{\pi} \leqq \sin\ x$

(2)
次の不等式が成り立つことを証明せよ。
$\displaystyle \int_{0}^{\pi}e^{-\sin\ x}dx \leqq \pi\left[ 1-\dfrac{ 1 }{ e } \right]$
この動画を見る 
PAGE TOP