問題文全文(内容文):
数Ⅲ(微分求積法②)
Q.次の極限値を求めよ。
①$\displaystyle \lim_{ n \to \infty } (\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n})$
➁$\displaystyle \lim_{ n \to \infty } (\frac{1}{n\sqrt{n}})(\sqrt{2}+\sqrt{4}+…+\sqrt{2n})$
③$\displaystyle \lim_{ n \to \infty }\frac{\pi}{n} \sum_{k=1}^{n}\cos^2\frac{k\pi}{6n}$
数Ⅲ(微分求積法②)
Q.次の極限値を求めよ。
①$\displaystyle \lim_{ n \to \infty } (\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n})$
➁$\displaystyle \lim_{ n \to \infty } (\frac{1}{n\sqrt{n}})(\sqrt{2}+\sqrt{4}+…+\sqrt{2n})$
③$\displaystyle \lim_{ n \to \infty }\frac{\pi}{n} \sum_{k=1}^{n}\cos^2\frac{k\pi}{6n}$
単元:
#数学(中学生)#積分とその応用#面積・体積・長さ・速度#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分求積法②)
Q.次の極限値を求めよ。
①$\displaystyle \lim_{ n \to \infty } (\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n})$
➁$\displaystyle \lim_{ n \to \infty } (\frac{1}{n\sqrt{n}})(\sqrt{2}+\sqrt{4}+…+\sqrt{2n})$
③$\displaystyle \lim_{ n \to \infty }\frac{\pi}{n} \sum_{k=1}^{n}\cos^2\frac{k\pi}{6n}$
数Ⅲ(微分求積法②)
Q.次の極限値を求めよ。
①$\displaystyle \lim_{ n \to \infty } (\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n})$
➁$\displaystyle \lim_{ n \to \infty } (\frac{1}{n\sqrt{n}})(\sqrt{2}+\sqrt{4}+…+\sqrt{2n})$
③$\displaystyle \lim_{ n \to \infty }\frac{\pi}{n} \sum_{k=1}^{n}\cos^2\frac{k\pi}{6n}$
投稿日:2020.08.06