大学入試問題#694「The king property」 東京女子医科大学(2008) キングプロパティ - 質問解決D.B.(データベース)

大学入試問題#694「The king property」 東京女子医科大学(2008) キングプロパティ

問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{|x|}{1+e^x} dx$

出典:2008年東京女子医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京女子医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{|x|}{1+e^x} dx$

出典:2008年東京女子医科大学 入試問題
投稿日:2024.01.04

<関連動画>

誘導がなければ素晴らしい解法も出てくるんじゃね?

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
点Pは原点を出発して,「確率pで+1,確率1-pで+2」の移動を繰り返す.
ただし$0\leqq p \leqq 1$とする.このような移動を繰り返して自然数nの点に到達する確率を$p_n$と表す.次の問に答えよ.

(1)$p_1,p_2,p_3$を$p$を用いて表せ.
(2)$p_n,p_{n+1},p_{n+2}$の間の関係式を求めよ.
(3)$a_n=p_{n+1}-p_n(n \geqq 1)$とおくとき,数列${a_n}$が満たす漸化式を求めよ.
(4)pとnを用いて,一般項$p_n$を表せ.
(5)数列${p_n}$の極限を調べよ.
この動画を見る 

大学入試問題#833「計算力大事!」 #筑波大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
関数$f(x)$の導関数$g(x)$は定数$k( \neq 0)$を用いて次式で与えられる。
$g(x)=\displaystyle \frac{e^{kx}-e^{kx}}{2}$

次の問いに答えよ。
1.$f(0)=0$であるとき$f(x)$を求めよ。
2.$p$は定数とする。
  $\displaystyle \int_{0}^{p} \displaystyle \frac{1}{\sqrt{ 1+\{g(x)\} }}g'(x) \ dx$を求めよ

出典:2023年筑波大学 入試問題
この動画を見る 

順天堂大(医)等比数列の和の収束

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
{$a_n$}は等比数列
無限級数
$a_2+a_4+a_6+…$は$\displaystyle \frac{12}{5}$に収束
$a_3+a_6+a_9+…$は$\displaystyle \frac{24}{19}$に収束

{$a_n$}の公比、初項、無限階数$a_1+a_2+1_3+…$は[ ]に収束するか求めよ

出典:順天堂大学医学部 過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2024医学部第2問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{ 2 }1\lt a \lt 2$を満たす実数$a$について、$S(a)=\int_1^2 {|log(1+x)-logax|} dx$とするとき、次の問いに答えよ。ただし、logは自然対数である。
(1)$a$の値に応じて、$1\leqq x \leqq 2$の範囲で方程式$log(1+x)-logax=0$の解の個数を調べよ。
(2)$S(a)$を求めよ。
(3)$S(a)(1 \lt a \lt 2)$の最小値と、そのときの$a$の値を求めよ。
この動画を見る 

福田の数学〜立教大学2023年経済学部第1問(6)〜関数方程式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (6)2次式$f(x)$が$f(f(x))$=$f(x)^2$+1 を満たすとき$f(x)$=$\boxed{\ \ カ\ \ }$である。
この動画を見る 
PAGE TOP