【数C】【複素数平面】実数であることの証明 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】実数であることの証明 ※問題文は概要欄

問題文全文(内容文):
α、βを複素数とし、α≠0とするとき、次のことを証明せよ。
αβが実数 ⇔ β=kαとなる実数kがある
チャプター:

0:00 オープニング
0:04 複素数が実数である条件
1:28 1つ目の証明
4:27 証明・確認
7:34 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
α、βを複素数とし、α≠0とするとき、次のことを証明せよ。
αβが実数 ⇔ β=kαとなる実数kがある
投稿日:2025.01.05

<関連動画>

福田の数学〜筑波大学2024理系第6問〜純虚数となる条件と複素数平面上の点

アイキャッチ画像
単元: #数Ⅱ#複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
定数$\alpha$は実数でない複素数とする。以下の問いに答えよ。

(1) $\dfrac{\alpha - | \alpha|}{\alpha + | \alpha|} $は純虚数であることを示せ。

(2) 純虚数$\beta$で$\dfrac{\beta - | \alpha|}{\alpha + | \alpha|}$が純虚数となるものがただ1つ存在することを示せ。

(3) 複素数$z$を$\dfrac{z - | \alpha|}{\alpha + | \alpha|}$が純虚数となるように動かすとき、$|z|$が最小となる$z$を$\alpha$を用いて示せ。
この動画を見る 

福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。

2023東京工業大学理系過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜京都大学の問題に挑戦

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $w$を$0$でない複素数、$x,y$を$w+\displaystyle \frac{1}{w}=x+yi$を満たす実数とする。
(1)実数$R$は$R \gt 1$を満たす定数とする。$w$が絶対値$R$の複素数
全体を動くとき、$xy$平面上の点$(x,\ y)$の軌跡を求めよ。

(2)実数$\alpha$は$0 \lt \alpha \lt \displaystyle \frac{\pi}{2}$を満たす定数とする。$w$が偏角$\alpha$の複素数
全体を動くとき、$xy$平面上の点$(x,\ y)$の軌跡を求めよ。

京都大学過去問
この動画を見る 

横浜市大 複素数 cos36°,cos108° 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
(1)$x^2-x-1=0$解け
(2)複素数Z$(\neq 0)$,$\quad x=Z+\frac{1}{Z}$として、このxを(1)の方程式に代入して、すべての解を求めよ。
(3)$cos\frac{\pi}{5}$と$cos\frac{3\pi}{5}$の値
この動画を見る 

【数C】【複素数平面】基本公式と式変形 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$z$が$3z+\bar{z}=2-2i$を満たすとき、以下の問いに答えよ。

(1)$3\bar{z}+z$を求めよ。

(2)$z$を求めよ。
この動画を見る 
PAGE TOP