福田のおもしろ数学323〜小数部分の和を不等式で評価する - 質問解決D.B.(データベース)

福田のおもしろ数学323〜小数部分の和を不等式で評価する

問題文全文(内容文):
$x$の小数部分を$\{x\}$で表すことにする。
$\displaystyle\{\sqrt{1}\}+\{\sqrt{2}\}+\{\sqrt{3}\}+・・・+\{\sqrt{n^2}\}\leqq \frac{n^2-1}{2}$
を証明せよ。
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$x$の小数部分を$\{x\}$で表すことにする。
$\displaystyle\{\sqrt{1}\}+\{\sqrt{2}\}+\{\sqrt{3}\}+・・・+\{\sqrt{n^2}\}\leqq \frac{n^2-1}{2}$
を証明せよ。
投稿日:2024.11.20

<関連動画>

新潟大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{a+2}=\displaystyle \frac{(a_{n+1})^3}{(a_{n})^2}$

$a_{1}=2$
$a_{2}=4$

一般項$a_{n}$を求めよ

出典:1996年新潟大学 過去問
この動画を見る 

【わかりやすく解説】和の記号Σ(シグマ)(数学B/数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の和を求めよ。
(4)$\displaystyle \sum_{k=1}^n (k^2+3k+2)$
この動画を見る 

【高校数学】 数B-65 等比数列とその和①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
各項に一定の数$r$を掛けると,次の項が得られるとき,
この数列を等比数列といい,$r$をその公比という.
このとき,すべての自然数$n$について,①$a_{n+1}=\quad$が成り立つ.
また,初項$a$,公比$r$の等比数列$\{a_n \}$の一般項は
②$a_n=\quad$で求めることができる.

次の等比数列の$\Box$に適する数を入れ,一般項を求めよう.

③$1,3,9,\Box,\Box,・・・$

④$\Box,10,-20,\Box,-80,・・・$

⑤$3,1,\Box,\dfrac{1}{9},\Box,・・・$
この動画を見る 

ヨビノリたくみ 東大 非典型的な漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=\dfrac{\log_x}{x}(x \gt 0)$である.

(1)$f^{(n)}(x)=\dfrac{a_n+b_n\log x}{x^{n+1}}$と表される事を示し,漸化式を求めよ.
(2)$h_n=\displaystyle \sum_{\beta=1}^n \dfrac{1}{k}$を用いて,$a_n,b_n$の一般項を求めよ.

2005東大過去問
この動画を見る 

【数B】【数列】漸化式3 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列 $\{a_n\}$ の一般項を求めよ。
$a_1$ = $1$, $a_{n+1} = 2a_n + 3n $
この動画を見る 
PAGE TOP