福田の数学〜大阪大学2025理系第5問〜確率漸化式 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2025理系第5問〜確率漸化式

問題文全文(内容文):

$\boxed{5}$

投げたときに表と裏の出る確率が

それぞれ$\dfrac{1}{2}$のコインがある。

$A,B,C$の$3$文字を$BAC$のように$1$個ずつ

すべて並べて得られる文字列に対して、

コインを投げて次の操作を行う。

・表がで出たら文字列の左から$1$文字目と
 $2$文字目を入れかえる。

・裏がで出たら文字列の左から$2$文字目と
 $3$文字目を入れかえる。

例えば、文字列が$BAC$であるときに、

$2$回続けてコインを投げて表、裏の順に出た

とすると、文字列は$BAC$から$ABC$を経て

$ACB$となる。

最初の文字列は$ABC$であるとする。

コインを$n$回続けて投げたあとの文字列が

$ABC$である確率を$p_n$とし、

$BCA$である確率を$q_n$とする。

(1)$k$を正の整数とするとき、

$p_{2k}-q_{2k}$を求めよ。

(2)$n$を正の整数とするとき、

$p_n$を求めよ。

$2025$年大阪大学理系過去問題
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

投げたときに表と裏の出る確率が

それぞれ$\dfrac{1}{2}$のコインがある。

$A,B,C$の$3$文字を$BAC$のように$1$個ずつ

すべて並べて得られる文字列に対して、

コインを投げて次の操作を行う。

・表がで出たら文字列の左から$1$文字目と
 $2$文字目を入れかえる。

・裏がで出たら文字列の左から$2$文字目と
 $3$文字目を入れかえる。

例えば、文字列が$BAC$であるときに、

$2$回続けてコインを投げて表、裏の順に出た

とすると、文字列は$BAC$から$ABC$を経て

$ACB$となる。

最初の文字列は$ABC$であるとする。

コインを$n$回続けて投げたあとの文字列が

$ABC$である確率を$p_n$とし、

$BCA$である確率を$q_n$とする。

(1)$k$を正の整数とするとき、

$p_{2k}-q_{2k}$を求めよ。

(2)$n$を正の整数とするとき、

$p_n$を求めよ。

$2025$年大阪大学理系過去問題
投稿日:2025.06.15

<関連動画>

福田の数学〜慶應義塾大学2022年総合政策学部第2問〜デコボコ数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$10進法で表したときm桁$(m \gt 0)$である正の整数nの第i桁目$(1 \leqq i \leqq m)$を
$m_i$としたとき、$i\neq j$のとき$n_i\neq n_j$であり、かつ、次の$(\textrm{a})$または$(\textrm{b})$のいずれか
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。
$(\textrm{a})1 \leqq i \lt m$であるiに対して、
iが奇数の時$n_i \lt n_{i+1}$となり、
iが偶数の時$n_i \gt n_{i+1}$となる。
$(\textrm{b})1 \leqq i \lt m$であるiに対して、$i$が奇数の時$n_i \gt n_{i+1}$となり、
$i$が偶数の時$n_i \lt n_{i+1}$となる。

例えば、361は$(\textrm{a})$を満たす10進法3桁のデコボコ数であり、$52409$は$(\textrm{b})$を
満たす10進法5桁のデコボコ数である。なお、4191は$(\textrm{a})$を満たすが「$i\neq j$のとき
$n_i\neq n_j$である」条件を満たさないため、10進法4桁のデコボコ数ではない。
(1)nが10進法2桁の数$(10 \leqq n \leqq 99)$の場合、
$n_1\neq n_2$であれば$(\textrm{a})$または$(\textrm{b})$を
満たすため、10進法2桁のデコボコ数は$\boxed{\ \ アイ\ \ }$個ある。
(2)nが10進法3桁の数$(100 \leqq n \leqq 999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ ウエオ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ カキク\ \ }$個あるため、
10進法3桁のデコボコ数は合計$\boxed{\ \ ケコサ\ \ }$個ある。
(3)nが10進法4桁の数$(1000 \leqq n \leqq 9999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ シスセソ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ タチツテ\ \ }$個あるため、
10進法4桁のデコボコ数は合計$\boxed{\ \ トナニヌ\ \ }$個ある。また10進法4桁のデコボコ数
の中で最も大きなものは$\boxed{\ \ ネノハヒ\ \ }$、最も小さなものは$\boxed{\ \ フヘホマ\ \ }$である。

2022慶應義塾大学総合政策学部過去問
この動画を見る 

数学「大学入試良問集」【5−1 重複組み合わせ】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1つのさいころを続けて5回投げて、出た目を順に$x_1,x_2,x_3,x_4,x_5$とする。
このとき、$x_1 \leqq x_2 \leqq x_3$と$x_3 \geqq x_4 \geqq x_5$,両不等式が同時に成り立つ確率を求めよ。
この動画を見る 

数学「大学入試良問集」【5−3 カードの並べ方と確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$1$から$6$までの数字を書いた6枚のカードを左から右に1列に並べるとき、次のようにカードが並ぶ確率を求めよ。
(1)
$1,2,3$のカードのうちの2枚が両端に並ぶ

(2)
$1$のカードが$2$または$3$のカードの隣に並ぶ

(3)
$1$と$6$のカードの間に2枚以上のカードが並ぶ

(4)
任意のカードについて、そのカードより左側にあるカードのうち、奇数カードの枚数が、偶数カードの枚数より少なくないように並ぶ。
この動画を見る 

【数A】【場合の数と確率】確率の基本1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A,B,C,D,E,F,G,Hの8文字を無造作に1列に並べるとき、次のようになる確率を求めよ。
(1)両端がA,Bである。
(2)A,Bが隣り合う。
(3)AはBより左に、BはCより左にある。

男子6人、女子2人がくじ引きで席を決めて円卓を囲んで座るとき、次のようになる確率を求めよ。
(1)女子2人が隣り合う。
(2)女子2人が向かい合う。

A,B,C,Dの4人がじゃんけんを1回するとき、次の確率を求めよ。
(1)Aだけが勝つ確率
(2)1人だけが勝つ確率

3つのさいころを同時に投げるとき、次のような目が出る確率を求めよ。
(1)目の積が150
(2)目の積が18
(3)目の積が135以上
この動画を見る 

Japanese Mathematics Olympiad 2017

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1⃣
How many pairs of positive whole numbers (a,b)
such that ab=29! , a<b , a&b are coprime.

2⃣
How many sets of positive whole numbers (a,b,c,d,e)
such that all of them are different & a+b=c+d+e=29
この動画を見る 
PAGE TOP