【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知】【毎日17時投稿】 - 質問解決D.B.(データベース)

【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知】【毎日17時投稿】

問題文全文(内容文):
(1)すべての実数xに対して
$\sin 3x=3\sin x-4\sin^3x$
$\cos 3x=-3\cos x+4\cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$\theta$を、$\dfrac{\pi}{3}\lt \theta \lt \dfrac{\pi}{2}$と$\cos 3\theta=-\dfrac{11}{16}$を同時に満たすものとする。このとき、$\cos\theta$を求めよ。
(3)(2)の$\theta$に対して、定積分$\displaystyle \int_{0}^{\theta}sin^5x dx$を求めよ。
【高知大学 2023】
チャプター:

0:00 高知について
0:29 (1)
2:13 (2)
4:25 (3)
7:18 今回のポイント

単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)すべての実数xに対して
$\sin 3x=3\sin x-4\sin^3x$
$\cos 3x=-3\cos x+4\cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$\theta$を、$\dfrac{\pi}{3}\lt \theta \lt \dfrac{\pi}{2}$と$\cos 3\theta=-\dfrac{11}{16}$を同時に満たすものとする。このとき、$\cos\theta$を求めよ。
(3)(2)の$\theta$に対して、定積分$\displaystyle \int_{0}^{\theta}sin^5x dx$を求めよ。
【高知大学 2023】
投稿日:2024.02.15

<関連動画>

#宮崎大学(2016)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \displaystyle \frac{\sqrt{ 1+log\ x }}{x} dx$

出典:2016年宮崎大学
この動画を見る 

大学入試問題#824「たぶん良問」 #筑波大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^2-2x-2}{x^3-1} dx$

出典:2022年筑波大学
この動画を見る 

#東京理科大学2023#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ e }} \displaystyle \frac{e}{x^2+e} dx$

出典:2023年東京理科大学
この動画を見る 

#筑波大学(2019) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} (5\cos^2\theta-3\sin^2\theta)d\theta$

出典:2019年筑波大学
この動画を見る 

#37 数検1級1次 過去問 重積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$D:1 \leqq x \leqq 2,x \leqq y \leqq x^2$
$\displaystyle \int \displaystyle \int \cos\displaystyle \frac{\pi y}{x}\ dxdy$を計算せよ。
この動画を見る 
PAGE TOP