福田の1.5倍速演習〜合格する重要問題068〜千葉大学2017年度理系第11問〜部分和で定義された数列の極限 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題068〜千葉大学2017年度理系第11問〜部分和で定義された数列の極限

問題文全文(内容文):
11 数列{an}を次の条件によって定める。
a1=2,  an+1=1+11k=1n1ak (n=1,2,3,)
(1) a5を求めよ。
(2) an+1anの式で表せ。
(3) 無限級数k=11akが収束することを示し、その和を求めよ。

2017千葉大学理系過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#千葉大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
11 数列{an}を次の条件によって定める。
a1=2,  an+1=1+11k=1n1ak (n=1,2,3,)
(1) a5を求めよ。
(2) an+1anの式で表せ。
(3) 無限級数k=11akが収束することを示し、その和を求めよ。

2017千葉大学理系過去問
投稿日:2023.01.22

<関連動画>

福田の一夜漬け数学〜確率漸化式(3)〜東京大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、n回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率をpnとする。p2k+1を求めよ。(kは自然数とする)
この動画を見る 

福田の数学〜明治大学2021年理工学部第2問〜格子点と確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#大学入試解答速報#数学#明治大学#数B
指導講師: 福田次郎
問題文全文(内容文):
2 nを正の整数とする。座標平面上の点でx座標とy座標がともに整数であるもの
を格子点と呼ぶ。|x|+|y|=2nを満たす格子点(x,\ y)全体の集合をD2nとする。
(1)D4    個の点からなる。一般に、D2n    個の点からなる。
(2)D2nに属する点(x, y)|x2n|+|y|=2nを満たすものは全部で    個ある。
(3)D2nに属する点(x, y)|xn|+|yn|=2nを満たすものは全部で    個ある。
(4)D2nから異なる2点(x1, y1), (x2, y2)を無作為に選ぶとき、
|x1x2|+|y1y2|=2n
が成り立つ確率は    である。

2021明治大学理工学部過去問
この動画を見る 

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問6_数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{an}(n=1,2,3,...)は初項-8、公差4の等差数列であり、数列{bn} (n=1,2,3,...)は初項から第n項までの和がSn3n2(n=1,2,3,...)で与えられ る数列である。
(1)数列{an}の一般項anを求めよ。また、数列{an}の初項から第n項までの 和を求めよ。 (2)k=1n(ak)2を求めよ。
(3)数列{bn}の一般項bnを求めよ。 (4)nを3以上の整数とするとき、k=1n|akbk|を求めよ。
この動画を見る 

階乗に関する問題 巣鴨高校(改)

アイキャッチ画像
単元: #数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
1!+2!+3!+4!+5!++18!+19!+20!
を計算した結果の下2ケタを求めよ。

巣鴨高等学校(改)
この動画を見る 

芝浦工業大 漸化式 特性方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#学校別大学入試過去問解説(数学)#芝浦工業大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
a1=9
Sn+1=4an10
一般項anを求めよ

出典:2005年芝浦工業大学 過去問
この動画を見る 
PAGE TOP preload imagepreload image