大学入試問題#369「2種類準備しました」 広島市立大学2014 #定積分 - 質問解決D.B.(データベース)

大学入試問題#369「2種類準備しました」 広島市立大学2014 #定積分

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\cos\ x}{\cos^2x+2\sin\ x-2}dx$

出典:2014年広島市立大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\cos\ x}{\cos^2x+2\sin\ x-2}dx$

出典:2014年広島市立大学 入試問題
投稿日:2022.11.16

<関連動画>

大学入試問題#242 神戸大学(2015) 改 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}}\displaystyle \frac{2x\ \sin\ x}{\cos^2x}$dxを計算せよ。

出典:2015年神戸大学 入試問題
この動画を見る 

大学入試問題#244 南山大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$a$:正の定数
$\displaystyle \int_{-a}^{a}\displaystyle \frac{|x|e^x}{(1+e^x)^2}dx$を計算せよ

出典:2014年南山大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(2)〜定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}\ (2)t \geqq 0$に対して
$f(t)=2\pi\int_0^{2t}|x-t|\cos(2\pi x)dx-t\sin(4\pi t)$
と定義する。このとき、
$f(t)=0$
を満たすtのうち、閉区間[0,1]に属する相異なるものはいくつあるか

早稲田大学教育学部過去問
この動画を見る 

大学入試問題#487「みるからに微分」 電気通信大学(2022) #定積分 #極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#関数の極限#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 4 } \displaystyle \frac{1}{x-4}\displaystyle \int_{2}^{\sqrt{ x }} log(1+t^2)dt$

出典:2022年電気通信大学 入試問題
この動画を見る 

大学入試問題#539「これはよく出る」 佐賀大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{d\theta}{\cos^3\theta}$

出典:2023年佐賀大学 入試問題
この動画を見る 
PAGE TOP