福田の数学〜東京慈恵会医科大学2025医学部第1問〜さいころの目の積の確率 - 質問解決D.B.(データベース)

福田の数学〜東京慈恵会医科大学2025医学部第1問〜さいころの目の積の確率

問題文全文(内容文):

$\boxed{1}$

$1$個のさいころを$3$回続けて投げるとき、

$k$回目に出る目を$X_k (k-1,2,3)$とする。

このとき、

積$X_1 X_2 X_3$が$10$の倍数になる確率は$\boxed{ア}$、

和$X_1+X_2,X_2+X_3,X_3+X_1$が、

いずれも$6$の倍数にならない確率は$\boxed{イ}$である。

$2025$年東京慈恵会医科大学医学部過去問題
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$1$個のさいころを$3$回続けて投げるとき、

$k$回目に出る目を$X_k (k-1,2,3)$とする。

このとき、

積$X_1 X_2 X_3$が$10$の倍数になる確率は$\boxed{ア}$、

和$X_1+X_2,X_2+X_3,X_3+X_1$が、

いずれも$6$の倍数にならない確率は$\boxed{イ}$である。

$2025$年東京慈恵会医科大学医学部過去問題
投稿日:2025.07.13

<関連動画>

サイコロ🎲3回投げる確率 2024明大中野

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1から6の目のサイコロを3回投げる。出た目の数を順にa,b,cとするとき
$(a-1)(b-2)(c-3)=0$を満たす確率を求めよ
2024明治大学付属中野高等学校
この動画を見る 

【数学】確率:センター試験(平成30年)本試

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1枚のコインを最大で5回投げるゲームを行う。このゲームでは、1回投げるごとに表が出たら持ち点に2点を加え、裏が出たら持ち点に -1点を加える。はじめの持ち点は0点とし、ゲーム終了のルールを次のように定める。

 ・持ち点が再び0点になった場合は、その時点で終了する。

 ・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で終了する。

(1) コインを2回投げ終わって持ち点が -2点である確率は □
である。また、コインを2回投げ終わって持ち点が1点である確率は □
である。
(2) 持ち点が再び0点になることが起こるのは、コインを
□ 回投げ終わったときである。コインを □回投げ終わって持ち点が0点になる確率は
□である。
(3) ゲームが終了した時点で持ち点が4点である確率は □である。
(4) ゲームが終了した時点で持ち点が4点であるとき、コインを2回投げ終わって持ち点が1点である条件付き確率は□である。
この動画を見る 

佐賀大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022年 佐賀大学 過去問

1枚のコインをくり返し投げ、表の出る回数が
ちょうど$n$回目で5回となる確率を$P_n$

①$P_n$を$n$の式で

②$P_n$の最大値
この動画を見る 

福田の一夜漬け数学〜確率漸化式(1)〜京都大学の問題(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B,C$の3人が色のついた札を1枚ずつ持っている。初めに$A,B,C$
の持っている札の色はそれぞれ赤、白、青である。$A$がサイコロを
投げて、3の倍数の目が出たら$A$は$B$と持っている札を交換し、
その他の目が出たら$A$は$C$と札を交換する。この試行を$n$回繰り返し
た後に赤い札を$A,B,C$が持っている確率をそれぞれ$a_n,b_n,c_n$とする。

(1)$n \geqq 2$のとき、$a_n,b_n,c_n$を$a_{n-1},b_{n-1},b_{n-1}$で表せ。
(2)$a_n$を求めよ。
この動画を見る 

福田の数学〜北海道大学2025理系第5問〜条件を満たす3つの整数を選び出す場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$n$を$3$以上の整数とする。

(1)$k$を整数とする。

$k\lt a\lt b \lt c \leqq k+n$を満たす

整数$a,b,c$の選び方の

総数を$n$の式で表せ。

(2)$1\leqq a \lt b \lt c \leqq 2n$を満たす

整数$a,b,c$のうち、

$a+b \gt c$となる$a,b,c$の選び方の総数を$L$とする。

このとき、$L\gt {}_n \mathrm{ C }_3 $であることを示せ。
   
この動画を見る 
PAGE TOP