大学入試問題#78 横浜国立大学(2006) 置換積分 - 質問解決D.B.(データベース)

大学入試問題#78 横浜国立大学(2006) 置換積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{dx}{\sin^2x+3\cos^2x}$を計算せよ。

出典:2006年横浜国立大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{dx}{\sin^2x+3\cos^2x}$を計算せよ。

出典:2006年横浜国立大学 入試問題
投稿日:2022.01.03

<関連動画>

#電気通信大学(2014) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^2(1-x)^9 \ dx$

出典:2014年電気通信大学
この動画を見る 

大学入試問題#371「少し変わった置換積分」 京都大学 改 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{2}{\sqrt{ 3 }}}^{2}\displaystyle \frac{dx}{x\sqrt{ x^2-1 }}$

出典:京都大学 入試問題
この動画を見る 

練習問題42 早稲田大学 定積分 数学検定1級 教員採用試験

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#その他#早稲田大学#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{4}^{16}\sqrt{ x }\ e^{-\sqrt{ x }}\ dx$

出典:早稲田大学 教員採用試験
この動画を見る 

#数検準1級1次過去問#定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{e^2-1} log(x+1)$ $dx$

出典:数検準1級1次
この動画を見る 

大学入試問題#398「あえての正面突破!!」 京都教育大学2009 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} log(1+\tan\ x) dx$

出典:2009年京都教育大学 入試問題
この動画を見る 
PAGE TOP