福田の数学〜大阪大学2024年理系第4問〜回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2024年理系第4問〜回転体の体積

問題文全文(内容文):
$\Large\boxed{4}$ $a$>1とする。$xy$平面において、点($a$, 0)を中心とする半径1の円を$C$とする。
(1)円$C$の$x$≧$a$の部分と$y$軸および2直線$y$=1, $y$=-1で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積$V_1$を求めよ。
(2)円$C$で囲まれた部分を$y$軸のまわりに1回転してできる回転体の体積を$V_2$とする。(1)における$V_1$について、$V_1$=$2V_2$となる$a$の値を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $a$>1とする。$xy$平面において、点($a$, 0)を中心とする半径1の円を$C$とする。
(1)円$C$の$x$≧$a$の部分と$y$軸および2直線$y$=1, $y$=-1で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積$V_1$を求めよ。
(2)円$C$で囲まれた部分を$y$軸のまわりに1回転してできる回転体の体積を$V_2$とする。(1)における$V_1$について、$V_1$=$2V_2$となる$a$の値を求めよ。
投稿日:2024.06.03

<関連動画>

福田の数学〜東京医科歯科大学2023年医学部第2問PART2〜場合分けされた連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xyz空間において、3点(0,0,0),(1,0,0),(0,1,0)を通る平面$\pi_1$と3点(1,0,0),(0,1,0),(0,0,1)を通る平面$\pi_2$を考える。$x_0$=1, $y_0$=2, $z_0$=-2として、点P${}_0$($x_0$,$y_0$,$z_0$)から始めて、次の手順でP${}_1$($x_1$,$y_1$,$z_1$), P${}_2$($x_2$,$y_2$,$z_2$),... を決める。
・$k$が偶数のとき、$\pi_1$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
・$k$が奇数のとき、$\pi_2$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
このとき、次の問いに答えよ。
(1)$\pi_2$に直交するベクトルのうち、長さが1で$x$成分が正のもの$n_2$を求めよ。
(2)$x_{k+1}$,$y_{k+1}$,$z_{k+1}$をそれぞれ$x_k$,$y_k$,$z_k$を用いて表せ。
(3)$\displaystyle\lim_{k\to\infty}x_k$, $\displaystyle\lim_{k\to\infty}y_k$, $\displaystyle\lim_{k\to\infty}z_k$を求めよ。
この動画を見る 

弘前大(医、他)分数型漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010弘前大学過去問題
$a_1 = 4 \quad a_{n+1} = \frac{4a_n+3}{a_n+2}$
(1) $b_n = \frac{a_n -3}{a_n+1}$
$b_n$の漸化式を求めよ。
(2)$a_n$を求めよ。
この動画を見る 

大学入試の因数分解 福岡大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$abx^2-(a^2+b^2)x+ab$を因数分解

福岡大学
この動画を見る 

名古屋大・慶応(医)整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'03名古屋大学過去問題
nを自然数とするとき、$m \leqq n$でmとnの最大公約数が1となる自然数mの個数をf(n)とする。
(1)f(15)を求めよ。
(2)p,qが異なる素数のときf(pq)

'01慶応義塾大学過去問題
$\sqrt{n^2+n+34}$が整数となる自然数n
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第1問(4)〜不等式に関する文章題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(4)ある業者は、三つの工場A, B, Cから廃棄物を回収し、その中に含まれる三つの金属P, Q, Rを取り出して新たな製品Kを作る。各工場の廃棄物から取り出されるP, Q, Rの量は以下の通りである。
・工場Aの廃棄物10 kgからPが3 kg、Qが5 kg、Rが1 kg取り出される。
・工場Bの廃棄物10 kgからPが1 kg、Qが3 kg、Rが2 kg取り出される。
・工場Cの廃棄物10 kgからPが4 kg、Qが1 kg、Rが1 kg取り出される。
また、Pが2 kgと、Qが2 kgと、Rが1 kgで製品Kが1個作られる。工場A, B, Cから合わせて200 kgの廃棄物が回収できるとき、製品Kをできるだけ多く作るには、工場Aから$\boxed{\ \ ウ\ \ }$ kg、工場Bから$\boxed{\ \ エ\ \ }$ kg、工場Cから$\boxed{\ \ オ\ \ }$ kgの廃棄物を回収すればよく、そのとき製品Kは$\boxed{\ \ カ\ \ }$個作ることができる。
この動画を見る 
PAGE TOP