福田のおもしろ数学461〜関数方程式 - 質問解決D.B.(データベース)

福田のおもしろ数学461〜関数方程式

問題文全文(内容文):

$0$以上の実数で定義された実数値関数$f(x)$は

(i)$f(1)=1$

(ii)$f\left(\dfrac{1}{x+y}\right)=f\left(\dfrac{1}{x}\right)+f\left(\dfrac{1}{y}\right)$

$ \hspace{ 100pt } (x+y,x,y\neq 0)$

(iii)$(x+y)f(x+y)=xyf(x)f(y)$

$\hspace{ 100pt }(x+y,x,y\neq 0)$

を満たしている。$f(x)$を求めよ。
    
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$0$以上の実数で定義された実数値関数$f(x)$は

(i)$f(1)=1$

(ii)$f\left(\dfrac{1}{x+y}\right)=f\left(\dfrac{1}{x}\right)+f\left(\dfrac{1}{y}\right)$

$ \hspace{ 100pt } (x+y,x,y\neq 0)$

(iii)$(x+y)f(x+y)=xyf(x)f(y)$

$\hspace{ 100pt }(x+y,x,y\neq 0)$

を満たしている。$f(x)$を求めよ。
    
投稿日:2025.04.07

<関連動画>

福田の1.5倍速演習〜合格する重要問題021〜一橋大学2016年度文系数学第4問〜絶対値の付いた3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とし、$f(x)=x^3-3ax$とする。区間$-1 \leqq x \leqq 1$における
$|f(x)|$の最大値をMとする。Mの最小値とそのときのaの値を求めよ。

2016一橋大学文系過去問
この動画を見る 

高専数学 微積II #19(1) 3次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\dfrac{1}{(1-x)^2}$の
$x=0$における3次近似式を求めよ.
この動画を見る 

【高校数学】数Ⅲ-113 平均値の定理①

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(平均値の定理①)
Q.次の関数$f(x)$と区間$[a,b]$に対して、条件$\frac{f(b)-f(a)}{b-a}=f'(c)$、$a\lt c\lt b$を満たす$c$の値を求めよ

①$f(x)=\frac{1}{x}$、$[2,4]$

➁$f(x)=\log x$、$[1,2]$
この動画を見る 

【短時間でマスター!!】円の接線の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
数学2B
円の接線の求め方を解説します。

点A$(3.1)$から円$x^2+y^2=2$に引いた接線の方程式と接点の座標を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題091〜大阪大学2018年度理系第1問〜不等式の証明と関数の値域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 次の問に答えよ。
(1)x>0の範囲で不等式
x-$\frac{x^2}{2}$<$\log(1+x)$<$\frac{x}{\sqrt{1+x}}$
が成り立つことを示せ。
(2)xがx>0の範囲を動くとき、
y=$\frac{1}{\log(1+x)}$-$\frac{1}{x}$
のとりうる値の範囲を求めよ。

2018大阪大学理系過去問
この動画を見る 
PAGE TOP