大学入試問題#757「綺麗な基本問題」 東京理科大学(2001) #積分方程式 - 質問解決D.B.(データベース)

大学入試問題#757「綺麗な基本問題」 東京理科大学(2001) #積分方程式

問題文全文(内容文):
関数$f(x)=1+\displaystyle \frac{1}{2}ce^{-x}$において、定数$c$は
$c=\displaystyle \int_{0}^{\frac{\pi}{2}} e^t f(t)\sin\ t\ dt$を満たす。
このとき、$c$の値を求めよ。

出典:2001年東京理科大学工学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
関数$f(x)=1+\displaystyle \frac{1}{2}ce^{-x}$において、定数$c$は
$c=\displaystyle \int_{0}^{\frac{\pi}{2}} e^t f(t)\sin\ t\ dt$を満たす。
このとき、$c$の値を求めよ。

出典:2001年東京理科大学工学部 入試問題
投稿日:2024.03.07

<関連動画>

数学「大学入試良問集」【13−15 格子点の解法】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$k$を$0$以上の整数とするとき、$\displaystyle \frac{x}{3}+\displaystyle \frac{y}{2} \leqq k$をみたす$0$以上の整数$x,y$の組$(x,y)$の個数を$a_k$とする。
$a_k$を$k$の式で表せ。

(2)
$n$を$0$以上の整数とするとき
$\displaystyle \frac{x}{3}+\displaystyle \frac{y}{2}+z \leqq n$
をみたす$0$以上の整数$x,y,z$の組$(x,y,z)$の個数を$b_n$とする。
$b_n$を$n$の式で表せ。
この動画を見る 

大学入試問題#290 産業医科大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{d\theta}{\sqrt{ 2 }\cos(\theta-\displaystyle \frac{\pi}{4})}$

出典:2013年産業医科大学 入試問題
この動画を見る 

福田の数学〜東北大学2025理系第3問〜4次関数が極大値をもつ条件

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$a$を実数とし、関数$f(x)$を次のように定める。

$f(x)=x^4+\dfrac{4a}{3}x^3+(a+2)x^2$

このとき、以下の問いに答えよ。

(1)関数$f(x)$が極大値をもつような$a$のとり得る

値の範囲を求めよ。

(2)関数$f(x)$が$x=0$で極大値をもつような

$a$のとり得る値の範囲を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

【数学】2022年度神奈川県立高校入試数学大問5イ別解

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大,小2つのさいころを同時に1回投げ,大きいさいころの出た目の数をa,小さいさいころの出た目の数をbとする。出た目の数によって,線分PQ上に点Rを,PR:RQ=a:bとなるようにとり,線分PRを1辺とする正方形をX,線分RQを1辺とする正方形をYとし,この2つの正方形の面積を比較する。
(イ) Xの面積がYの面積より25cm²以上大きくなる確率は□である。
この動画を見る 

福田の数学〜格子点の個数を数えるコツ〜北里大学2023年医学部第1問(1)〜複素数平面上の円の内部にある格子点

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
( 1 ) 8 の 6 乗根のうち、実部が正で虚部が負である複素数をzとする。このとき、$\fbox{ア}$であり、$z+z^5=\fbox{イ}$。複素数平面において、点zを中心とする円Cが実軸と2点a,bで交わり、$|a-b|=\sqrt{30}$を満たしている。このとき、円Cの半径 r は$r=\fbox{ウ}$である。また、円Cの内部にある複素数のうち、実部、虚部ともに 0 以上の整数であるものの個数は$\fbox{エ}$である。

2023北里大学医過去問
この動画を見る 
PAGE TOP