問題文全文(内容文):
目標$\int_0^\infty e^{-x^2}dx = \frac{\sqrt x}{2}$
準備$∬_{D_{a}}e^{-(x^2+y^2)}dxdy$
$D_a:x^2+y^2 \leqq a^2$
$x \geqq 0 , y \geqq 0$
目標$\int_0^\infty e^{-x^2}dx = \frac{\sqrt x}{2}$
準備$∬_{D_{a}}e^{-(x^2+y^2)}dxdy$
$D_a:x^2+y^2 \leqq a^2$
$x \geqq 0 , y \geqq 0$
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高専(高等専門学校)
指導講師:
ますただ
問題文全文(内容文):
目標$\int_0^\infty e^{-x^2}dx = \frac{\sqrt x}{2}$
準備$∬_{D_{a}}e^{-(x^2+y^2)}dxdy$
$D_a:x^2+y^2 \leqq a^2$
$x \geqq 0 , y \geqq 0$
目標$\int_0^\infty e^{-x^2}dx = \frac{\sqrt x}{2}$
準備$∬_{D_{a}}e^{-(x^2+y^2)}dxdy$
$D_a:x^2+y^2 \leqq a^2$
$x \geqq 0 , y \geqq 0$
投稿日:2020.11.16