【上手いやり方など本当にあるのか?】連立方程式:東京学芸大学附属高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【上手いやり方など本当にあるのか?】連立方程式:東京学芸大学附属高等学校~全国入試問題解法

問題文全文(内容文):
次の連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
6x+5y=12 \\
4x-3y=-11
\end{array}
\right.
\end{eqnarray}$

東京学芸大学附属高等学校過去問
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
6x+5y=12 \\
4x-3y=-11
\end{array}
\right.
\end{eqnarray}$

東京学芸大学附属高等学校過去問
投稿日:2022.08.29

<関連動画>

【テスト対策・中1】1章-5

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算の①~⑥の部分で使われている計算法則を書きなさい.

$173+49+127=49+173+127=49+(173+127)=49+300=349$

$19 \times 131 - 19 \times 31 = 19 \times (131 - 31) = 19 \times 100 =1900$

$25 \times 72 \times 4 =72 \times 25 \times 4=72 \times (25 \times 4)=72 \times 100 =7200$

$12 \times \left(-\dfrac{1}{4}+\dfrac{7}{3}\right)-12\times \left(-\dfrac{1}{4}\right)+12\times \dfrac{7}{3} = -3 + 28 =25$

①~⑥は動画内参照
この動画を見る 

1から6のサイコロです。 慶應志木(改)B

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
nの目が1の目のn倍の確率で出るサイコロがある。
サイコロを1回投げて1の目が出る確率は?
2021慶應義塾志木高等学校
この動画を見る 

【高校受験対策】数学-死守9

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$- 7 + 8 \times \left(-\dfrac{1}{4}\right)$を計算せよ.

②$9(a + b) - (a + 3b) $を計算せよ.

③$(\sqrt7 + 6)(\sqrt7 - 2)$ を計算せよ.

④一次方程式$ x - 5 = 3x + 1 $を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=9 \\
x-6y=8
\end{array}
\right.
\end{eqnarray}$

⑥一次方程式 $x ^ 2 - 12x + 35 = 0 $を解け.

⑦右の表は,
ある中学校の3年生男子全体のハンドボール投げの記録を,
度数分布表に整理したものである.
26m以上投げた生徒の人数は,
3年生男子全体の何%か.

⑧右の図で,2点$C,D$は,線分$AB$を直径とする半円$O$の
$\stackrel{\huge\frown}{AB}$上にある点で,
$\stackrel{\huge\frown}{AC}=\dfrac{4}{9}\stackrel{\huge\frown}{AB},\stackrel{\huge\frown}{BD}=\dfrac{1}{3}\stackrel{\huge\frown}{AB}$である.
線分$AD$と線分$BC$の交点を$E$とするとき,
$\angle AEC$の大きさは何度か.

図は動画内を参照
この動画を見る 

連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{ab}{a+b}=1 \\
\dfrac{bc}{b+c}=2 \\
\dfrac{ca}{c+a}=3 \\
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

キレイな答え

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$2015 \times 98 - 2014 \times 99 +2016$

関西大学第一高等学校
この動画を見る 
PAGE TOP