福田の数学〜中央大学2022年経済学部第1問(5)〜微分係数 - 質問解決D.B.(データベース)

福田の数学〜中央大学2022年経済学部第1問(5)〜微分係数

問題文全文(内容文):
(5)曲線$y=x^3+ax^2+b$上の点(1, -1)における接線の傾きが-3である。
このとき、定数a,bの値を求めよ。

2022中央大学経済学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(5)曲線$y=x^3+ax^2+b$上の点(1, -1)における接線の傾きが-3である。
このとき、定数a,bの値を求めよ。

2022中央大学経済学部過去問
投稿日:2022.11.07

<関連動画>

大学入試問題#925「初手が見えれば一直線」 #関西大学2023

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \left(\dfrac{1}{\sqrt x}\ \sin\ (3\sqrt x)\ \cos \ (5\sqrt x)\right)dx$
を解け.

2023関西大学過去問題
この動画を見る 

福田のおもしろ数学495〜次数の高い連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

連立方程式

$\begin{eqnarray}
\left\{
\begin{array}{l}
a^3+3ab^2+3ac^2-6abc=1 \\
b^3+3ba^2+3bc^2-6abc=1 \\\
c^2+3ca^2+3cb^2-6abc=1
\end{array}
\right.
\end{eqnarray}$

を満たす実数$a,b,c$を求めよ。
    
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第1問(1)〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)複素数平面上で、方程式

$\vert z+i \vert = 2 \vert z-\sqrt3 \vert$

を満たす点$z$全体が表す図形は、

中心が$\boxed{ア}$,半径が$\boxed{イ}$である。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

16京都府教員採用試験(数学:1番 積分)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#不定積分・定積分#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$n \in IN$とする.
$2(\sqrt{n+1}-1)\lt 1+\dfrac{1}{\sqrt 2}+\dfrac{1}{\sqrt 3}+・・・+\dfrac{1}{\sqrt n}$
これを解け.
この動画を見る 

【数Ⅱ】【微分法と積分法】条件からの関数決定2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす2次関数 $f(x)$ を求めよ。

(1)$\int_{-1}^{1} f(x) \,dx = 0$,
$\int_{0}^{2} f(x) \,dx = 10$
, $\int_{-1}^{1} x f(x) \,dx = \frac{4}{3}$

(2)
$\int_{0}^{2} f(x) \,dx = 1$,
$\int_{0}^{2} x f(x) \,dx = 1$,
$\int_{0}^{2} x^2 f(x) \,dx = 2$
この動画を見る 
PAGE TOP