数と式 真偽の調べ方【いつものシミズ君がていねいに解説】 - 質問解決D.B.(データベース)

数と式 真偽の調べ方【いつものシミズ君がていねいに解説】

問題文全文(内容文):
a,bは実数とする。次の命題の真偽を求めよ。
(1)$ab=0$ならば$a^2+b^2=0$である。
(2)$a^2=4$ならば$\vert a+1\vert \geqq 1$である。
(3)$ab$が有理数であるならば、a、bはともに有理数である。
(4)$a+b、ab$がともに有理数ならば、a、bはともに有理数である。

全体集合を$U$とし、条件$p、q$を満たす全体の集合を、それぞれ$P.Q$とする。
命題$p$(補集合)⇒$q$が真であるとき、$P、Q$について常に成り立つ事をすべて選べ。

①$P=Q$
②$Q⊂P$
③$Q$(補集合)$⊂P$
④$P⊂Q$(補集合)
⑤$P∪Q$(補集合)$=P$
⑥$P∪Q$(補集合)$=Q$(補集合)
⑦$P∩Q=∅$
⑧$P∪Q=U$
チャプター:

00:00~03:10 【1】
03:14~07:06 【2】

単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bは実数とする。次の命題の真偽を求めよ。
(1)$ab=0$ならば$a^2+b^2=0$である。
(2)$a^2=4$ならば$\vert a+1\vert \geqq 1$である。
(3)$ab$が有理数であるならば、a、bはともに有理数である。
(4)$a+b、ab$がともに有理数ならば、a、bはともに有理数である。

全体集合を$U$とし、条件$p、q$を満たす全体の集合を、それぞれ$P.Q$とする。
命題$p$(補集合)⇒$q$が真であるとき、$P、Q$について常に成り立つ事をすべて選べ。

①$P=Q$
②$Q⊂P$
③$Q$(補集合)$⊂P$
④$P⊂Q$(補集合)
⑤$P∪Q$(補集合)$=P$
⑥$P∪Q$(補集合)$=Q$(補集合)
⑦$P∩Q=∅$
⑧$P∪Q=U$
投稿日:2023.05.11

<関連動画>

19神奈川県教員採用試験(数学:関数の最大値)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$y=-(x^2+2x)^2+4(x^2+2x)+\frac{7}{2} \quad (-2 \leqq x \leqq 1)$の値域に含まれる最大の整数を求めよ。
この動画を見る 

平方根 小数部分 成城学園

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2 \sqrt 3$の小数部分をaとするとき
$a^2+6a-16=?$


成城学園高等学校
この動画を見る 

【2次関数の応用問題はこう解く!】最大値と最小値の応用問題を図でイメージする方法を解説!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):

$a \gt 0$のとき、$y=x^2-4x+3(0 \leqq x \leqq a)$の最小値を求めよ


$a \gt 0$のとき、$y=-x^2+2ax-a^2+2$の$0 \leqq x \leqq 2$での最大値を求めよ
この動画を見る 

この手があったか!分母の有理化

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{21}{\sqrt 7}=$
この動画を見る 

Jr. Japan Mathematics Olympiad 1st round

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x+\sqrt{x(x+1)} + x+\sqrt{x(x+2)} + x+$
$\sqrt{x(x+1)(x+2)}=2$ solve x(only the positive real number one)
この動画を見る 
PAGE TOP