数と式 真偽の調べ方【いつものシミズ君がていねいに解説】 - 質問解決D.B.(データベース)

数と式 真偽の調べ方【いつものシミズ君がていねいに解説】

問題文全文(内容文):
a,bは実数とする。次の命題の真偽を求めよ。
(1)$ab=0$ならば$a^2+b^2=0$である。
(2)$a^2=4$ならば$\vert a+1\vert \geqq 1$である。
(3)$ab$が有理数であるならば、a、bはともに有理数である。
(4)$a+b、ab$がともに有理数ならば、a、bはともに有理数である。

全体集合を$U$とし、条件$p、q$を満たす全体の集合を、それぞれ$P.Q$とする。
命題$p$(補集合)⇒$q$が真であるとき、$P、Q$について常に成り立つ事をすべて選べ。

①$P=Q$
②$Q⊂P$
③$Q$(補集合)$⊂P$
④$P⊂Q$(補集合)
⑤$P∪Q$(補集合)$=P$
⑥$P∪Q$(補集合)$=Q$(補集合)
⑦$P∩Q=∅$
⑧$P∪Q=U$
チャプター:

00:00~03:10 【1】
03:14~07:06 【2】

単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bは実数とする。次の命題の真偽を求めよ。
(1)$ab=0$ならば$a^2+b^2=0$である。
(2)$a^2=4$ならば$\vert a+1\vert \geqq 1$である。
(3)$ab$が有理数であるならば、a、bはともに有理数である。
(4)$a+b、ab$がともに有理数ならば、a、bはともに有理数である。

全体集合を$U$とし、条件$p、q$を満たす全体の集合を、それぞれ$P.Q$とする。
命題$p$(補集合)⇒$q$が真であるとき、$P、Q$について常に成り立つ事をすべて選べ。

①$P=Q$
②$Q⊂P$
③$Q$(補集合)$⊂P$
④$P⊂Q$(補集合)
⑤$P∪Q$(補集合)$=P$
⑥$P∪Q$(補集合)$=Q$(補集合)
⑦$P∩Q=∅$
⑧$P∪Q=U$
投稿日:2023.05.11

<関連動画>

【数I】中高一貫校問題集3(数式・関数編)26:数と式:多項式:次の式を展開しよう。(a-b)(a+b)(a²+ab+b²)(a²-ab+b²)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を展開しよう。(a-b)(a+b)(a²+ab+b²)(a²-ab+b²)
この動画を見る 

高校入試レベルだよ

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
高校入試レベルの図形の問題です.
この動画を見る 

2つの合同な直角三角形 斜線部の面積=❓ 青雲中

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△BDA $\equiv$ △CFA
四角形EFDAの面積は?
*図は動画内参照

青雲中学校
この動画を見る 

【数Ⅰ】面積公式・ヘロンの公式・内接円の半径【小学生からの脱却!】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
面積公式・ヘロンの公式・内接円の半径に関して解説していきます.
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$3^{\sqrt5}$ VS $5^{\sqrt3}$
この動画を見る 
PAGE TOP