福田の一夜漬け数学〜図形と方程式〜領域(8)直線の通過領域(実践編2)、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜領域(8)直線の通過領域(実践編2)、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ $\theta$が任意の実数を動くとき、直線$\ell:(\cos\theta)\ x+(\sin\theta)\ y=1$
の通過する領域を図示せよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\theta$が任意の実数を動くとき、直線$\ell:(\cos\theta)\ x+(\sin\theta)\ y=1$
の通過する領域を図示せよ。
投稿日:2018.09.05

<関連動画>

2022北海道大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-$
$k+1 $
(1)$ f(k-1)$の値を求めよ.
(2)$ \vert k \vert \lt 2$のとき,不等式 $ f(n)\geqq 0$を解け.

2022北海道大過去問
この動画を見る 

福田の数学〜3乗根のおおよその値を知る方法〜早稲田大学2023年社会科学部第3問〜3乗根と2重根号を簡単にする

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。

2023早稲田大学社会科学部過去問
この動画を見る 

【超難問】x-1=0が難しすぎる世界

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
深読みしすぎた$x-1=0$
この動画を見る 

加法定理の証明をベクトルで

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
cosα・cosβ+sinα・sinβ =

この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第6問〜関数の極値と回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 関数$y$=$e^x\sin x$は$x$=$a$(0<$a$<$\pi$)において極値を取る。このとき、
$a$=$\frac{\boxed{シ}}{\boxed{ス}}\pi$である。また、曲線$y$=$e^x\sin x$(0≦$x$≦$a$)と直線$x$=$a$および$x$軸によって囲まれた図形を$x$軸のまわりに1回転してできる立体の体積Vは、
$p$=$\frac{\boxed{セ}}{\boxed{ソ}}$として、V=$\frac{\boxed{タ}e^{px}+\boxed{チ}}{\boxed{ツ}}\pi$
である。
この動画を見る 
PAGE TOP