大学入試問題#509「あえて三角関数」 自治医科大学(2023) #曲線 - 質問解決D.B.(データベース)

大学入試問題#509「あえて三角関数」 自治医科大学(2023) #曲線

問題文全文(内容文):
$x,\ 0 \leqq y$:実数
$\displaystyle \frac{x^2}{4}+\displaystyle \frac{y^2}{9}=1$を満たすとき
$5x+2y$の最大値を$M$、最小値を$m$とするとき$\sqrt{ M^2-m^2 }$を求めよ

出典:2023年自治医科大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$x,\ 0 \leqq y$:実数
$\displaystyle \frac{x^2}{4}+\displaystyle \frac{y^2}{9}=1$を満たすとき
$5x+2y$の最大値を$M$、最小値を$m$とするとき$\sqrt{ M^2-m^2 }$を求めよ

出典:2023年自治医科大学 入試問題
投稿日:2023.04.18

<関連動画>

福田の数学〜明治大学2022年理工学部第3問〜平行六面体の対角線を軸とした回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#微分法と積分法#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、
すべての辺の長さは1であり、$\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }$のどの
2つのなす角も$\frac{\pi}{3}$であるとする。
(1)$\overrightarrow{ OF }$を$\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }$を用いて表すと、
$\overrightarrow{ OF }= \boxed{き}$である。
(2)$|\overrightarrow{ OF }|,\ \cos \angle AOF$を求めると$|\overrightarrow{ OF }|= \boxed{く},$
$\ \cos \angle AOF=\boxed{け}$である。
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して
できる円錐の体積は$\boxed{こ}$である。
(4)対角線OF上に点Pをとり、$|\overrightarrow{ OP }|=t$とおく。点Pを通り、$\overrightarrow{ OF }$に垂直な平面
をHとする。平行六面体$OABC-DEFG$を平面Hで切った時の断面が六角形
となるようなtの範囲は$\boxed{さ}$である。このとき、平面Hと辺AEの交点をQ
として、$|\overrightarrow{ AQ }|$をtの式で表すと$|\overrightarrow{ AQ }|=\boxed{し}$である。
また、$|\overrightarrow{ PQ }|^2$を$t$の式で表すと
$|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{す}$
である。
(5)平行六面体$OABC-DEFG$を、直線OFの周りに1回転してできる回転体
の体積は$\boxed{こ}$である。

2022明治大学理工学部過去問
この動画を見る 

練習問題30 積分(y軸回転体) 数検 教採

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#その他#不定積分・定積分#数学検定#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$y=\log(x+1),y=3$
$y$軸で囲まれた部分を$y$軸を中心として
回転したときの体積$V$を求めよ.
この動画を見る 

【高校数学】 数Ⅱ-85 領域と最大・最小③

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①x,yが3つの不等式$x-3y\geqq-6,x+2y\geqq4,3x+y\leqq12$
を満たすとき、$x^2+y^2$の最大値および最小値を求めよう。
この動画を見る 

産業医大 3次方程式と2次方程式の共通解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$,$x^2-x+q=0$が1つの共通解をもつ,$p,q$を求めよ.

1996産業医大過去問
この動画を見る 

【高校数学】 数Ⅱー39 解と係数の関係⑥

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2次方程式$x^2-mx+2m+5=0$が次のような異なる2つの解をもつように、定数mの値の範囲を定めよう。

①2つとも正

②2つとも負

③異符号
この動画を見る 
PAGE TOP