福田の数学〜東京大学2025理系第1問〜媒介変数表示で表された曲線の面積と曲線の長さ - 質問解決D.B.(データベース)

福田の数学〜東京大学2025理系第1問〜媒介変数表示で表された曲線の面積と曲線の長さ

問題文全文(内容文):
$\boxed{1}$

座標平面上の点

$A(0,0),B(0,1),C(1,1),D(1,0)$を考える。

実数$0\lt t \lt 1$に対して、

線分$AB,BC,CD$を$t:(1-t)$に内分する点を

それぞれ$S_t,T_t$とする。

さらに、線分$S_tT_t$を$t:(1-t)$に内分する点を

$U_t$とする。

また、点$A$を$U_0$、点$D$を$U_1$とする。

(1)点$U_t$の座標を求めよ。

(2)$t$が$0\leqq t\leqq 1$の範囲を動くときに

点$U_t$描く曲線と、

線分$AD$で囲まれた部分の面積を求めよ。

(3)$a$を$0\lt a\lt 1$を満たす実数とする。

$t$が$0\leqq t \leqq a$の範囲を動くときに点$U_t$が

描く曲線の長さを、$a$の多項式の形で求めよ。

図は動画内参照

$2025$年東京大学理系過去問題
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

座標平面上の点

$A(0,0),B(0,1),C(1,1),D(1,0)$を考える。

実数$0\lt t \lt 1$に対して、

線分$AB,BC,CD$を$t:(1-t)$に内分する点を

それぞれ$S_t,T_t$とする。

さらに、線分$S_tT_t$を$t:(1-t)$に内分する点を

$U_t$とする。

また、点$A$を$U_0$、点$D$を$U_1$とする。

(1)点$U_t$の座標を求めよ。

(2)$t$が$0\leqq t\leqq 1$の範囲を動くときに

点$U_t$描く曲線と、

線分$AD$で囲まれた部分の面積を求めよ。

(3)$a$を$0\lt a\lt 1$を満たす実数とする。

$t$が$0\leqq t \leqq a$の範囲を動くときに点$U_t$が

描く曲線の長さを、$a$の多項式の形で求めよ。

図は動画内参照

$2025$年東京大学理系過去問題
投稿日:2025.02.25

<関連動画>

18岡山県教員使用試験(数学:5番 媒介変数表示のグラフ・面積)

アイキャッチ画像
単元: #平面上の曲線#その他#媒介変数表示と極座標#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$ $ 0\leqq t\leqq \pi$,
$x=\cos t,y=\sin 2t+2\sin t$とする.

(1)曲線の概形
(2)曲線とx軸で囲まれた面積を求めよ.
この動画を見る 

【数C】【平面上の曲線】中心の極座標が(a,0)で極Oを通る円をCとし、極Oを除くC上の動点をPとする。線分OPを1辺とする正方形OPQRを作るとき、点Qの軌跡の極方程式を求めよ。

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。中心の極座標が(a,0)で極Oを通る円をCとし、極Oを除くC上の動点をPとする。線分OPを1辺とする正方形OPQRを作るとき、点Qの軌跡の極方程式を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系058〜微分(3)媒介変数表示の微分

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数列$\textrm{III}$ 微分(3) 媒介変数表示
$x=a(\theta-\sin\theta), y=a(1-\cos\theta)$のとき、$\frac{dy}{dx},\frac{d^2y}{dx^2}$を$\theta$で表せ。
この動画を見る 

高専数学 微積I #229(1) 媒介変数表示関数のx軸回転体の体積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq 1$とする.
$x=\sqrt t$
$y=\sqrt t-t$
と$x$軸で囲まれた図形を
$x$軸のまわりに回転してできる回転体の
体積$V$を求めよ.
この動画を見る 

高専数学 微積I #226(1) 媒介変数表示の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq 1$とする.
曲線$x=t^2,y=t^2-2t+1$
$x$軸,$y$軸で囲まれた図形の
面積$S$を求めよ.
この動画を見る 
PAGE TOP