【数Ⅲ】【積分とその応用】定積分置換積分 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】定積分置換積分 ※問題文は概要欄

問題文全文(内容文):
次の定積分を求めよ。
(1) $\displaystyle \int_{-1}^0 (x+2)\sqrt{3x+4}~dx$
(2) $\displaystyle \int_{0}^4 \frac{x^2}{\sqrt{x+1}}~dx$
(3) $\displaystyle \int_{0}^1 \frac{x^3}{\sqrt{1+x^2}}~dx$
(4) $\displaystyle \int_{1}^3 \frac{dx}{x\sqrt{x+1}}$
(5) $\displaystyle \int_{1}^2 \frac{dx}{e^x-1}$
(6) $\displaystyle \int_{0}^{\frac\pi4} \frac{\sin^3x}{\cos^2x}~dx$

次の定積分を求めよ。ただし、$a$は正の定数とする。
(1) $\displaystyle \int_{0}^1 \sqrt{2x-x^2}~dx$
(2) $\displaystyle \int_{1}^{\frac12} \frac{dx}{\sqrt{2x-x^2}}$
(3) $\displaystyle \int_{1}^{\frac a2} \frac{dx}{(a^2-x^2)^{\frac32}}$
(4) $\displaystyle \int_{1}^{2} \frac{dx}{x^2-2x+2}$
(5) $\displaystyle \int_{3}^{5} \frac{dx}{x^2-4x+4}$
(6) $\displaystyle \int_{6}^{12} \frac{dx}{x^2-3x-10}$
(7) $\displaystyle \int_{0}^{a} \frac{dx}{(x^2+a^2)^2}$
(8) $\displaystyle \int_{1}^{\sqrt3} \frac{2x+1}{x^2+1}~dx$

次のことが成り立つことを証明せよ。
(1) $\displaystyle \int_a^b f(x)~dx=\int_a^bf(a+b-x)~dx$
(2) $\displaystyle\int_{-a}^af(x)~dx=\int_0^a\{f(x)+f(-x)\}~dx$
(3) $\displaystyle \int_0^af(x)~dx=\int_0^{\frac a 2}\{f(x)+f(a-x)\}~dx$
(4) $f(a+x)=f(a-x)$のとき$\displaystyle \int_{a-b}^{a+b}f(x)~dx=2\int_a^{a+b}f(x)~dx$
チャプター:

0:00 置換積分法を用いた計算問題
14:38 置換積分法を用いた証明問題

単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
(1) $\displaystyle \int_{-1}^0 (x+2)\sqrt{3x+4}~dx$
(2) $\displaystyle \int_{0}^4 \frac{x^2}{\sqrt{x+1}}~dx$
(3) $\displaystyle \int_{0}^1 \frac{x^3}{\sqrt{1+x^2}}~dx$
(4) $\displaystyle \int_{1}^3 \frac{dx}{x\sqrt{x+1}}$
(5) $\displaystyle \int_{1}^2 \frac{dx}{e^x-1}$
(6) $\displaystyle \int_{0}^{\frac\pi4} \frac{\sin^3x}{\cos^2x}~dx$

次の定積分を求めよ。ただし、$a$は正の定数とする。
(1) $\displaystyle \int_{0}^1 \sqrt{2x-x^2}~dx$
(2) $\displaystyle \int_{1}^{\frac12} \frac{dx}{\sqrt{2x-x^2}}$
(3) $\displaystyle \int_{1}^{\frac a2} \frac{dx}{(a^2-x^2)^{\frac32}}$
(4) $\displaystyle \int_{1}^{2} \frac{dx}{x^2-2x+2}$
(5) $\displaystyle \int_{3}^{5} \frac{dx}{x^2-4x+4}$
(6) $\displaystyle \int_{6}^{12} \frac{dx}{x^2-3x-10}$
(7) $\displaystyle \int_{0}^{a} \frac{dx}{(x^2+a^2)^2}$
(8) $\displaystyle \int_{1}^{\sqrt3} \frac{2x+1}{x^2+1}~dx$

次のことが成り立つことを証明せよ。
(1) $\displaystyle \int_a^b f(x)~dx=\int_a^bf(a+b-x)~dx$
(2) $\displaystyle\int_{-a}^af(x)~dx=\int_0^a\{f(x)+f(-x)\}~dx$
(3) $\displaystyle \int_0^af(x)~dx=\int_0^{\frac a 2}\{f(x)+f(a-x)\}~dx$
(4) $f(a+x)=f(a-x)$のとき$\displaystyle \int_{a-b}^{a+b}f(x)~dx=2\int_a^{a+b}f(x)~dx$
投稿日:2025.03.12

<関連動画>

練習問題31 積分 数検準1級 教採対応

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \dfrac{\tan^{-1}x+1}{x^2+1}dx$
を計算せよ.
この動画を見る 

#茨城大学2024#定積分_7#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} e^x(e^{2x}+\frac{1}{e^{2x}}) dx$

出典:2024年茨城大学
この動画を見る 

東邦大学医学部医学科(2015) #Shorts #King_property #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
$I=\displaystyle \int_{-2}^{2} \displaystyle \frac{x^22^{-x}}{2^x+2^{-x}} dx$

出典:2015年東邦大学医学部医学科
この動画を見る 

【高校数学】毎日積分57日目~47都道府県制覇への道~【①沖縄】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$を実数とし、$f(x)=xe^{-|x|}, g(x)=ax$とおく。次の問いに答えよ。
問1 $f(x)$の増減を調べ、$y=f(x)$のグラフの概形をかけ。ただし$\displaystyle \lim_{x\to \infty}xe^{-x}=0$は証明なしに用いてよい。
問2 $0<a<1$のとき、曲線$y=f(x)$と直線$y=g(x)$で囲まれた2つの部分の面積の和を求めよ。
【琉球大学 2023】
この動画を見る 

大学入試問題#587「たぶん基本問題」 広島市立大学(2013) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \sqrt[3]{ x^5+x^3 }\ dx$

出典:2013年広島市立大学 入試問題
この動画を見る 
PAGE TOP