#宮崎大学(2015) #定積分 - 質問解決D.B.(データベース)

#宮崎大学(2015) #定積分

問題文全文(内容文):
$\displaystyle \int_{1}^{2} x^5e^{x^3} dx$

出典:2015年宮崎大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} x^5e^{x^3} dx$

出典:2015年宮崎大学
投稿日:2024.06.05

<関連動画>

大学入試問題#822「これ、積分で出題されるんやー」 #筑波大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int log(x+\sqrt{ x^2+1 }) dx$

出典:2022年筑波大学
この動画を見る 

【数学】2022年度神奈川県立高校入試数学大問2

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(ア)$0.2x+0.8y=1,\dfrac{1}{2}x+\dfrac{7}{8}y=-2$

(イ)$4x^2-x-2=0$

(ウ)$y=\dfrac{-1}{4}x^2,$xの変域が$-2\leqq x\leqq 4$のとき,yの変域は?

(エ)A班の生徒と,A班よりも5人少ないB班の生徒で,体育館にイスを並べた。A班の生徒はそれぞれ3脚ずつ並べ、B班の生徒はそれぞれ4脚ずつ並べたところ,A班の生徒が並べたイスの総数はB班の生徒が並べたイスの総数より3脚多かった。A班の生徒の人数を求めなさい。

(オ)$x=\sqrt6+\sqrt3,y=\sqrt6-\sqrt3$ のとき、$x^2y+xy^2$の値は?
この動画を見る 

福田の数学〜九州大学2023年理系第4問〜加法定理が成り立つ関数を調べるPART1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 以下の文章を読んで後の問いに答えよ。
三角関数$\cos x$, $\sin x$については加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数$f(x)$, $g(x)$が以下の条件を満たすとする。
(A)すべてのx, yについて$f(x+y)$=$f(x)$$f(y)$-$g(x)$$g(y)$
(B)すべてのx, yについて$g(x+y)$=$f(x)$$g(y)$+$g(x)$$f(y)$
(C)$f(0)$$\ne$0
(D)$f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=0, $g'(0)$=1
条件(A), (B), (C)から$f(0)$=1, $g(0)$=0 がわかる。以上のことから$f(x)$, $g(x)$はすべてのxの値で微分可能で、$f'(x)$=$-g(x)$, $g'(x)$=$f(x)$が成立することが示される。上のことから$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 であることが、実部と虚部を調べることによりわかる。ただし$i$は虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数$f(x)$=$\cos x$, $g(x)$=$\sin x$であることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', $f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=a, $g'(0)$=b
におきかえて、条件(A), (B), (C), (D)'を満たす$f(x)$, $g(x)$はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)から$f(0)$=1, $g(0)$=0が上と同様にわかる。ここで
$p(x)$=$e^{-\frac{a}{b}x}f(\frac{x}{b})$, $q(x)$=$e^{-\frac{a}{b}x}g(\frac{x}{b})$
とおくと、条件(A), (B), (C), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされる。すると前半の議論により、$p(x)$, $q(x)$がまず求まり、このことを用いると$f(x)$=$\boxed{\ \ ア\ \ }$, $g(x)$=$\boxed{\ \ イ\ \ }$が得られる。
(1)下線部①について、$f(0)$=1, $g(0)$=0であることを示せ。
(2)下線部②について、$f(x)$がすべてのxの値で微分可能な関数であり、
$f'(x)$=$-g(x)$となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされることを示せ。つまり$p(x)$を$q(x)$が、
(B)すべてのx, yについて、$q(x+y)$=$p(x)$$q(y)$+$q(x)$$p(y)$
(D)$p(x)$, $q(x)$はx=0 で微分可能で$p'(0)$=0, $q'(0)$=1
を満たすことを示せ。また空欄$\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$に入る関数を求めよ。

2023九州大学理系過去問
この動画を見る 

室蘭工業大 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#室蘭工業大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$自然数

(1)
$x^{3m}+1$を$x^3-1$で割った余りを求めよ

(2)
$x^n+1$を$x^2+x+1$で割った余りを求めよ

出典:1998年室蘭工業大学 過去問
この動画を見る 

初の試み 面積比 令和4年度 2022 入試問題100題解説98問目! 愛知県

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△CBEの面積は四角形ABCDの何倍?
*図は動画内参照

2022愛知県
この動画を見る 
PAGE TOP