福田の数学〜立教大学2022年経済学部第2問〜平面ベクトルの直交条件 - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年経済学部第2問〜平面ベクトルの直交条件

問題文全文(内容文):
tを正の実数とする。OA=1, OB=tである三角形OABにおいて、a=OA
b=OB,AOB=θとする。ただし、0<θ<π2とする。また、辺OAの中点
をM、辺OBを1:2に内分する点をNとする。次の問いに答えよ。
(1)ANBMabを用いて表せ。
(2)内積ANBMtcosθを用いて表せ。
(3)ANBMであるとき、cosθtを用いて表せ。
(4)ANBMであるとき、cosθの最小値とそれを与えるtの値をそれぞれ求めよ。
(5)ANBMとなるθが存在するtの値の範囲を求めよ。

2022立教大学経済学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
tを正の実数とする。OA=1, OB=tである三角形OABにおいて、a=OA
b=OB,AOB=θとする。ただし、0<θ<π2とする。また、辺OAの中点
をM、辺OBを1:2に内分する点をNとする。次の問いに答えよ。
(1)ANBMabを用いて表せ。
(2)内積ANBMtcosθを用いて表せ。
(3)ANBMであるとき、cosθtを用いて表せ。
(4)ANBMであるとき、cosθの最小値とそれを与えるtの値をそれぞれ求めよ。
(5)ANBMとなるθが存在するtの値の範囲を求めよ。

2022立教大学経済学部過去問
投稿日:2022.09.24

<関連動画>

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART3

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
3 点Oを原点とする座標平面上の0でない2つのベクトル
m=(a, c), n=(b, d)
に対して、D=ad-bc とおく。座標平面上のベクトルqに対して、次の条件を考える。
条件Ⅰ rm+sn=qを満たす実数r, sが存在する。
条件Ⅱ rm+sn=qを満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべてのqに対して成り立つとする。D 0であることを示せ。
以下、D 0であるとする。
(2)座標平面上のベクトルv, w
mv=nw=1, mw=nv=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトルqに対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 

福田の数学〜九州大学2022年理系第1問〜空間における折れ線の最小〜平面の方程式を勉強するよ!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
座標空間内の5点
O(0,0,0), A(1,1,0), B(2,1,2), P(4,0,1), Q(4,0,5)
を考える。3点O,A,Bを通る平面をαとし、a=OA, b=OBとおく。
以下の問いに答えよ。
(1)ベクトルa, bの両方に垂直であり、x成分が正であるような、
大きさが1のベクトルnを求めよ。
(2)平面αに関して点Pと対称な点P'の座標を求めよ。
(3)点Rが平面α上を動くとき、|PR|+|RQ|が最小となるような
点Rの座標を求めよ。

2022九州大学理系過去問
この動画を見る 

【数B】平面ベクトル:ベクトル方程式 ベクトルと軌跡:座標平面において、△ABCはBA・CA=0を満たしている。この平面上の点Pが条件AP・BP+BP・CP+CP・AP=0を満たす(続きは概要欄で)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面において、△ABCはBA・CA=0を満たしている。この平面上の点Pが条件AP・BP+BP・CP+CP・AP=0を満たすとき、Pはどのような図形上の点であるか。
この動画を見る 

【数C】平面ベクトル:チェバメネの利用 △OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。
チェバメネラウスを使った解法版
この動画を見る 

【数C】ベクトルの基本⑨最小値を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
この動画を見る 
PAGE TOP preload imagepreload image