【数Ⅱ】複素数と方程式:2次方程式の解の判別(最高次数の係数が文字の場合)kは定数とする。次の方程式の解の種類を判別せよ。(k²-1)x²+2(k-1)+2=0 - 質問解決D.B.(データベース)

【数Ⅱ】複素数と方程式:2次方程式の解の判別(最高次数の係数が文字の場合)kは定数とする。次の方程式の解の種類を判別せよ。(k²-1)x²+2(k-1)+2=0

問題文全文(内容文):
$(k²-1)x²+2(k-1)+2=0$の解の種類を判別せよ。
チャプター:

0:00 オープニング
0:31 x²の係数で場合分け
1:09 x²の係数が0
2:55 x²の係数が0でない

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$(k²-1)x²+2(k-1)+2=0$の解の種類を判別せよ。
投稿日:2019.05.19

<関連動画>

複素関数論⑥(指数関数e^zの微分)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
複素関数論⑥(指数関数e^zの微分)を解説していきます.
この動画を見る 

2021同志社大 4次方程式4つの虚数解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$c$は実数であり,定数である.
$x^4+cx^3+cx^2+cx+1=0$の$4$つの解がすべて虚数となる.$c$の必要十分条件である.
$4$つの虚数解が複素平面上で正方形になる$c$の値を求めよ.

2021同志社過去問
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+\frac 1{x^2} = \sqrt2$
$x^{2024} + \frac 1{x^{2024}} = ?$
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第3問〜整式の割り算の余りの問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整式$P(x)$を$x-1$で割ると1余り、$(x+1)^2$で割ると$3x+2$余る。
このとき、次の問いに答えよ。
(1)$P(x)$を$x+1$で割った時の余りを求めよ。
(2)$P(x)$を$(x-1)(x+1)$で割った時の余りを求めよ。
(3)$P(x)$を$(x-1)(x+1)^2$で割った時の余りを求めよ。

2022早稲田大学社会科学部過去問
この動画を見る 

4次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4$つの解を求めよ.
$(x-7.5)^4+(x-8.5)^4=1$
この動画を見る 
PAGE TOP