問題文全文(内容文):
①2つの円が点$A$で同じ直線に接している.
この直線上の$A$と異なる点$B$を通る2本の直線と,
2円との2つの交点をそれぞれ$C,D$および$E,F$とする.
このとき,4点$C,D,E,F$は同一円周上にあることを証明しよう.
図は動画内参照
①2つの円が点$A$で同じ直線に接している.
この直線上の$A$と異なる点$B$を通る2本の直線と,
2円との2つの交点をそれぞれ$C,D$および$E,F$とする.
このとき,4点$C,D,E,F$は同一円周上にあることを証明しよう.
図は動画内参照
単元:
#数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①2つの円が点$A$で同じ直線に接している.
この直線上の$A$と異なる点$B$を通る2本の直線と,
2円との2つの交点をそれぞれ$C,D$および$E,F$とする.
このとき,4点$C,D,E,F$は同一円周上にあることを証明しよう.
図は動画内参照
①2つの円が点$A$で同じ直線に接している.
この直線上の$A$と異なる点$B$を通る2本の直線と,
2円との2つの交点をそれぞれ$C,D$および$E,F$とする.
このとき,4点$C,D,E,F$は同一円周上にあることを証明しよう.
図は動画内参照
投稿日:2016.05.04





