問題文全文(内容文):
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$を用いて、次の式を因数分解しよう。
$x^3+y^3-1+3xy$
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$を用いて、次の式を因数分解しよう。
$x^3+y^3-1+3xy$
チャプター:
0:00 オープニング
0:05 問題文
0:15 形を見極めて代入
1:32 名言
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$を用いて、次の式を因数分解しよう。
$x^3+y^3-1+3xy$
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$を用いて、次の式を因数分解しよう。
$x^3+y^3-1+3xy$
投稿日:2021.09.04