東京海洋大学 漸化式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

東京海洋大学 漸化式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2013東京海洋大学過去問題
$a_1 = 1 \quad n=1,2,3\cdots$
$a_{n+1} = 27^{n^2-3n-9}a_n$
(1)一般項$a_n$を求めよ
(2)$a_n$が最小となるnの値
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2013東京海洋大学過去問題
$a_1 = 1 \quad n=1,2,3\cdots$
$a_{n+1} = 27^{n^2-3n-9}a_n$
(1)一般項$a_n$を求めよ
(2)$a_n$が最小となるnの値
投稿日:2018.05.10

<関連動画>

和歌山大 ド・モアブルの定理 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#数学的帰納法#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=b_1=1$
$a_{n+1}=a_n-b_n$
$b_{n+1}=a_n+b_n$
(1)$a_n+b_ni= (1+i)^n$を数学的帰納法で証明せよ。
(2)$a_N=2^{100}$となる自然数Nをすべて求めよ。
この動画を見る 

福田のおもしろ数学284〜(1+1/n)^nが増加数列である証明

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数列 $ \large{ a }\scriptsize{ n } = \left(1+\frac{1}{n} \right)^n $ は増加することを証明せよ。
この動画を見る 

福田のおもしろ数学426〜99個の分数の積を効率よく求める

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\prod_{ k = 1 }^n ak=a_1a_2\cdots a_n
\end{eqnarray}$とするとき、

$\displaystyle \prod_{k=2}^{100} \dfrac{k^3+1}{k^3-1}$を求めよ。
   
この動画を見る 

室蘭工業大 漸化式基本

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=2,a_{n+1}=\dfrac{1}{2}a_n+\dfrac{4n+2^n}{2^{n+1}}$である.
$a_n\lt a_{n+1}$を満たす最大の自然数$n$を求めよ.

室蘭工業大過去問
この動画を見る 

特性方程式を解いてる場合じゃないよ

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
A,B,C,Dの5人がパス回しをする。
Aから始めて、ボールを持った人は等しい確率で自分以外の人にパスを出す。
n回目にBがボールを持っている確率は?
この動画を見る 
PAGE TOP