数検準1級1次(4番 複素数) - 質問解決D.B.(データベース)

数検準1級1次(4番 複素数)

問題文全文(内容文):
$\boxed{4}$複素数$Z=\dfrac{\sqrt3}{2}-\dfrac{1}{2}i$である.

(1)$Z$の偏角$\theta$を求めよ.
(2)$Z^5+\dfrac{1}{Z^5}$の値を求めよ.
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$複素数$Z=\dfrac{\sqrt3}{2}-\dfrac{1}{2}i$である.

(1)$Z$の偏角$\theta$を求めよ.
(2)$Z^5+\dfrac{1}{Z^5}$の値を求めよ.
投稿日:2020.12.25

<関連動画>

神戸大 複素数の2次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+i=0$を解け

出典:1971年神戸大学 過去問
この動画を見る 

横浜市(医)複素数の2次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'00横浜市立大学過去問題
虚部が正の複素数Zで$iZ^2+2iZ+\frac{1}{2}+i=0$をみたすZを
$Z=a+bi$(a,b実数.b>0)の形で求めよ。
この動画を見る 

藤田医科大学 式の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a,b,c,dは実数である.
$\dfrac{(a^2+b^2)(c^2+d^2)}{(ac+bd)^2}$の最小値を求めよ.
この動画を見る 

05高知県教員採用試験(数学:3-(2) 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}-(2)$
$z=1+\sqrt3 i$のとき,
$1+z+z^2+z^3+z^4+z^5$の値を求めよ.
この動画を見る 

昭和大(医学部)複素数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ Z=\cos\dfrac{2}{5}\pi+i\sin\dfrac{2}{5}\pi,w=Z+Z^3$とするとき,
①$w+\bar{w}$
②$w・\bar{w}$
の値を求めよ.

昭和大(医)過去問
この動画を見る 
PAGE TOP