割って余る整数問題 慶應女子 - 質問解決D.B.(データベース)

割って余る整数問題 慶應女子

問題文全文(内容文):
724を正の整数nで割ると9余り、n+1で割ると4余る。
考えられるnの値をすべて求めよ。

慶應義塾女子高等学校
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
724を正の整数nで割ると9余り、n+1で割ると4余る。
考えられるnの値をすべて求めよ。

慶應義塾女子高等学校
投稿日:2022.11.04

<関連動画>

福田の1.5倍速演習〜合格する重要問題067〜九州大学2017年度文系第4問〜最大公約数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 以下の問いに答えよ。
(1) 2017と225の最大公約数を求めよ。
(2) 225との最大公約数が15となる2017以下の自然数の個数を求めよ。
(3) 225との最大公約数が15であり、かつ1998との最大公約数が111となる2017以下の自然数を全て求めよ。

2017九州大学文系過去問
この動画を見る 

【数A】整数の性質:高3 5月K塾共通テスト 数学IA第4問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)168を素因数分解すると 168=(ア)^(イ)×3×(ウ) である。
よって、168の正の約数の個数は(エオ)個であり、AB=168かつ3≦A<Bを満たすA,Bの組は、全部で(カ)個である。
(2)正の整数nは正の約数の個数が6個であり、正の約数の総和が168であるとする。このような正の整数nのうち、異なる2つの素因数を持つものを求めよう。
nは異なる素数p,qを用いて、n=p^(キ)・q と表せる。
このとき、nの正の約数の総和は[ク]であるから、p=(ケ) であり、n=(コサ) である。

[ク]の解答群
0: (p+p²)q
1: (1+p+p²)q
2: (p+p²)(1+q)
3: (1+p+p²)(1+q)
4: (p+p²+p³)q
5: (1+p+p²+p³)q
6: (p+p²+p³)(1+q)
7: (1+p+p²+p³)(1+q)

(3)正の整数mは正の約数の個数が12個であり、正の約数の総和が624であるとする。このような正の整数mのうち、異なる3つの素因数を持つものは m=(シスセ) である。
この動画を見る 

自作 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$10^{2020}-1$を$3^5$で割った余りを求めよ.
この動画を見る 

範囲を絞れ!整数問題の入試問題【東京女子大学】【数学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$a,b,c$が整数で、$1≦a≦b≦c$かつ$abc=a+b+c$のとき、$ab≦3$であることを示せ。
(2)$1≦a≦b≦c$かつ$abc=a+b+c$を満たす整数$a,b,c$をすべて求めよ。

東京女子大過去問
この動画を見る 

京都大 整数問題 高校数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'96京都大学過去問題
m,nは自然数で、m<nを満たすものとする。
$m^n+1,n^m+1$がともに10の倍数となるm,nを1組与えよ。
この動画を見る 
PAGE TOP