問題文全文(内容文):
${\Large\boxed{1}}$ (5)$A=4^{(4^4)},\ B=(4^4)^4$のとき、$\log_2(\log_2A)-\log_2(\log_2B)$の値を
整数で表すと$\boxed{\ \ カ\ \ }$である。
2021立教大学理工学部過去問
${\Large\boxed{1}}$ (5)$A=4^{(4^4)},\ B=(4^4)^4$のとき、$\log_2(\log_2A)-\log_2(\log_2B)$の値を
整数で表すと$\boxed{\ \ カ\ \ }$である。
2021立教大学理工学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (5)$A=4^{(4^4)},\ B=(4^4)^4$のとき、$\log_2(\log_2A)-\log_2(\log_2B)$の値を
整数で表すと$\boxed{\ \ カ\ \ }$である。
2021立教大学理工学部過去問
${\Large\boxed{1}}$ (5)$A=4^{(4^4)},\ B=(4^4)^4$のとき、$\log_2(\log_2A)-\log_2(\log_2B)$の値を
整数で表すと$\boxed{\ \ カ\ \ }$である。
2021立教大学理工学部過去問
投稿日:2021.10.06