#岩手大学(2013) #不定積分 #Shorts - 質問解決D.B.(データベース)

#岩手大学(2013) #不定積分 #Shorts

問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int 3x^2 log(x^3+1)dx$

出典:2013年岩手大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int 3x^2 log(x^3+1)dx$

出典:2013年岩手大学
投稿日:2024.05.29

<関連動画>

大学入試問題#228 愛知教育大学(2012) 3乗根の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#愛知教育大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\sqrt[ 3 ]{ 5\sqrt{ 2 }+7 }-\sqrt[ 3 ]{ 5\sqrt{ 2 }-7 }$

(1)$\alpha^3$を$\alpha$で表せ
(2)$\alpha$は整数であることを示せ

出典:2012年愛知教育大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(4)〜サイコロの目の最小値が2である確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(4)3個のさいころを同時に投げるとき、出た目の最小値が2以上となる確率は
$\boxed{\ \ ア\ \ }$であり、最小値がちょうど2となる確率は$\boxed{\ \ イ\ \ }$である。また、
出た目の最小値が2であったとき、どの2つの目も互いに素である条件付き確率は
$\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

【理数個別の過去問解説】2004年度京都大学 数学 第3問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(文系)2004年(第3問)
$△OAB$において、$a=OA、b=OB$とし、$\vert a\vert =3, \vert b\vert =5, cos\angle AOB=\dfrac{3}{5}$とする。このとき、$\angle AOB$の二等分線とBを中心とする半径$\sqrt{10}$の円との交点の、Oを原点とする位置ベクトルを、a, bを用いて表せ。
この動画を見る 

福田の数学〜千葉大学2023年第9問〜関数の増減と最大Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{9}$ 関数$f(x)$と実数$t$に対し、$x$の関数$tx$-$f(x)$の最大値があればそれを$g(t)$と書く。
(1)$f(x)$=$x^4$のとき、任意の実数$t$について$g(t)$が存在する。この$g(t)$を求めよ。
以下、関数$f(x)$は連続な導関数$f''(x)$を持ち、次の2つの条件(i),(ii)が成り立つものとする。
(i)$f'(x)$は増加関数、すなわち$a$<$b$ならば$f'(a)$<$f'(b)$
(ii)$\displaystyle\lim_{x \to -\infty}f'(x)$=$-\infty$ かつ $\displaystyle\lim_{x \to \infty}f'(x)$=$\infty$
(2)任意の実数$t$に対して、$x$の関数$tx$-$f(x)$は最大値$g(t)$を持つことを示せ。
(3)$s$を実数とする。$t$が実数全体を動くとき、$t$の関数$st$-$g(x)$は最大値$f(s)$となることを示せ。
この動画を見る 

#電気通信大学2024#不定積分_53

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} e^x \sqrt{6-e^x} dx$を解け.

2024電気通信大学過去問題
この動画を見る 
PAGE TOP