#岩手大学(2013) #不定積分 #Shorts - 質問解決D.B.(データベース)

#岩手大学(2013) #不定積分 #Shorts

問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int 3x^2 log(x^3+1)dx$

出典:2013年岩手大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int 3x^2 log(x^3+1)dx$

出典:2013年岩手大学
投稿日:2024.05.29

<関連動画>

東大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^2$と$y=-(x-a)^2+b$とによって囲まれる面積が$\displaystyle \frac{1}{3}$となるための必要十分条件を$a,b$を用いて表せ

出典:1975年東京大学 過去問
この動画を見る 

実数とは?  法政大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,b,cの値を求めよ(a,b,c:実数)
$a^2+b^2+c^2=2(-a+c-1)$

法政大学


この動画を見る 

福田の数学〜千葉大学2022年理系第4問〜不定方程式とユークリッドの互除法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
0以上9999以下の整数を4桁で表示し、以下の操作を行うこととする。
ただし、 4桁で表示するとは、整数が100以上999以下の場合は千の位の数字を0、
10以上99以下の場合は千の位と百の位の数字を0、1以上9以下の場合は
千の位と百の位と十の位の数字を0、そして0はどの位の数字も0とすることである。
操作:千の位の数字と十の位の数字を入れ換える。さらに、百の位の数字と
一の位の数字を入れ換える。
また、整数Lに対し、操作によって得られた整数を$\bar{ L }$と表す。
(1) Mを0以上9999以下の整数とし、$M=100x+y$のように整数$x, y (0 \leqq x \leqq 99,$
$ 0 \leqq y \leqq 99)$を用いて表す。操作によって得られた$\bar{ M }$ がMの
$\frac{2}{3}$倍に3を足した数 に等しいならば、
$-197x+298y = 9$が成り立つことを証明せよ。
(2) Nが0以上 9999 以下の整数ならば、操作によって
得られた整数$\bar{ N }$はNの$\frac{2}{3}$倍に1を足した数と等しくならないことを証明せよ。

2022千葉大学理系過去問
この動画を見る 

福田の数学〜東工大2022理系1修正版

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、$f(z)=z^2+az+b$ とする。a,bが
$|a| \leqq 1,  |b| \leqq 1$
を満たしながら動くとき、$f(z)=0$を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。

2022東京工業大学理系過去問
この動画を見る 

大学入試問題#353「依頼により誘導通りに解いてみた」 埼玉大学2013 #定積分 #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$f(x)$連続
$\displaystyle \int_{0}^{\pi} x\ f(\sin\ x)dx=\displaystyle \frac{\pi}{2}\displaystyle \int_{0}^{\pi} f(\sin\ x) dx$


(2)
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{x(a^2-4\cos^2\ x)\sin\ x}{a^2-\cos^2x} dx$

出典:2013年埼玉大学 入試問題
この動画を見る 
PAGE TOP