福田の数学〜筑波大学2023年理系第2問〜放物線で囲まれた図形の面積 - 質問解決D.B.(データベース)

福田の数学〜筑波大学2023年理系第2問〜放物線で囲まれた図形の面積

問題文全文(内容文):
$\Large\boxed{2}$ $\alpha$, $\beta$を実数とし、$\alpha$>1とする。曲線$C_1$:$y$=|$x^2$-1|と曲線$C_2$:$y$=-$(x-\alpha)^2$+$\beta$が、点($\alpha$, $\beta$)と点(p, q)の2点で交わるとする。また、$C_1$と$C_2$で囲まれた図形の面積を$S_1$とし、$x$軸、直線$x$=$\alpha$、および$C_1$の$x$≧1を満たす部分で囲まれた図形の面積を$S_2$とする。
(1)pを$\alpha$を用いて表し、0<p<1であることを示せ。
(2)$S_1$を$\alpha$を用いて表せ。
(3)$S_1$>$S_2$であることを示せ。

2023筑波大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $\alpha$, $\beta$を実数とし、$\alpha$>1とする。曲線$C_1$:$y$=|$x^2$-1|と曲線$C_2$:$y$=-$(x-\alpha)^2$+$\beta$が、点($\alpha$, $\beta$)と点(p, q)の2点で交わるとする。また、$C_1$と$C_2$で囲まれた図形の面積を$S_1$とし、$x$軸、直線$x$=$\alpha$、および$C_1$の$x$≧1を満たす部分で囲まれた図形の面積を$S_2$とする。
(1)pを$\alpha$を用いて表し、0<p<1であることを示せ。
(2)$S_1$を$\alpha$を用いて表せ。
(3)$S_1$>$S_2$であることを示せ。

2023筑波大学理系過去問
投稿日:2023.06.29

<関連動画>

大学入試問題#485「計算ミスに注意」 九州歯科大学(2016) #定積分 視聴者の僚太さんの紹介で投稿しました。

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{3} (3\sqrt{ x^4-6x^2+9 }-4x) dx$

出典:2016年九州歯科大学 入試問題
この動画を見る 

【高校数学】数Ⅱ:微分法と積分法:定積分と面積:1/6公式を用いて曲線で囲まれた図形の面積を求める!【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線または直線で囲まれた図形の面積Sを求めよ。
$y=x^2+3x,y=-x^2-x+6$
この動画を見る 

立命館大 面積公式は導きながら使おう

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#立命館大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021立命館大学過去問題
放物線$C:y=x^2-2x+2$
C上の2点A,BにP(t,0)から接線を引く
①直線ABの方程式をtを用いて表せ
②放物線Cと直線AP,BPとで囲まれる面積の最小値
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第6問〜3次関数の接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$
F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、$y=F(x)$で
定まる曲線をCとする。$\alpha \lt \beta$を満たす実数$\alpha,\ \beta$に対して、C上の点A$(\alpha,F(\alpha))$
におけるCの接線を$L_{\alpha}$とするとき、Cと$L_{\alpha}$とのA以外の共有点が$B(\beta,F(\beta))$
であるとする。さらに、BにおけるCの接線を$L_{\beta}$とのB以外の共有点を$(\gamma,F(\gamma))$
とする。

(1)接線$L_{\alpha}$の方程式を$y=l_{\alpha}(x)$とし、$G(x)=F(x)-l_{\alpha}(x)$とおく。さらに、
曲線$y=G(x)$上の点$(\beta,G(\beta))$における接線の方程式を$y=m(x)$とする。$G(x)$
および$m(x)$を、それぞれ$\alpha,\beta$を用いて因数分解された形に表せ。必要ならば
xの整式で表される関数$p(x),q(x)$とそれらの導関数に関して成り立つ公式
$\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)$
を用いてもよい。

(2)接線$L_{\beta}$の方程式は(1)で定めた$l_{\alpha}(x),\ m(x)$を用いて、$y=l_{\alpha}(x)+ m(x)$で
与えられることを示せ。さらに、$\gamma$を$\alpha,\beta$を用いて表せ。

(3)曲線Cおよび$L_{\beta}$で囲まれた図形の面積を$S$とする。$S$を$\alpha,\beta$を用いて表せ。
さらに$\alpha,\beta$が$-1 \lt \alpha \lt 0$かつ$1 \lt \beta \lt 2$を満たすとき、$S$の取り得る値の
範囲を求めよ。必要ならば$r \lt s$を満たす実数$r,s$に対して成り立つ公式
$\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4$
を用いてもよい。

2021慶應義塾大学経済学部過去問
この動画を見る 

【短時間でポイントチェック!!】定積分 面積①〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$y=x^2-3x$と$x$軸および$x=1,x=4$で囲まれた面積は?
この動画を見る 
PAGE TOP