15岡山県教員採用試験(数学:6番 サイクロイドの長さ) - 質問解決D.B.(データベース)

15岡山県教員採用試験(数学:6番 サイクロイドの長さ)

問題文全文(内容文):
$\boxed{6}$
曲線$c$ $\begin{eqnarray}
\left\{
\begin{array}{l}
x=r(\theta-\sin\theta) \\
y-r(1-\cos\theta)
\end{array}
\right.
\end{eqnarray}$
の長さ$\ell$を求めよ.

$r\gt 0,0\leqq \theta 2\pi$とする.
単元: #平面上の曲線#2次曲線#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
曲線$c$ $\begin{eqnarray}
\left\{
\begin{array}{l}
x=r(\theta-\sin\theta) \\
y-r(1-\cos\theta)
\end{array}
\right.
\end{eqnarray}$
の長さ$\ell$を求めよ.

$r\gt 0,0\leqq \theta 2\pi$とする.
投稿日:2021.03.09

<関連動画>

13愛知県教員採用試験(数学:8番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{8}$
$S_n=n^2-3n$を満たす数列${a_n}$において
$a_2+a_9+a_6+・・・+a_{2n}$を求めよ.
この動画を見る 

07滋賀県教員採用試験(数学:5番 接線の個数)

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$
点$(0,k)$から曲線$c$
$c:y=-xe^x$
に異なる3本の接線が引けるとき,
$k$の値の範囲を求めよ.
この動画を見る 

07三重県教員採用試験(数学:9番 球面,点と平面の距離)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{9}$
球面$S:x^2+y^2+z^2-4x+8z=k$の平面
$\alpha:x-2y-z=-6$による切り口の面積が
$6\pi$のとき,$k$の値を求めよ.
この動画を見る 

17愛知県教員採用試験(数学:2番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$y=\cos2\theta+4k\ \sin\theta+3k-3$
任意の定数$theta$に対して$y\leqq 0$となる.
$k$の範囲を求めよ.
この動画を見る 

07岡山県教員採用試験(数学:6番 積分)

アイキャッチ画像
単元: #積分とその応用#不定積分#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$m,n$を自然数とし,$m\neq n$とする.
以下を解け.

(1)$\displaystyle \int_{0}^{\pi} \sin^2 nx \ dx$
(2)$\displaystyle \int_{0}^{\pi} \sin\ mx・\sin \ nx \ dx$
(3)$\displaystyle \int_{0}^{\pi} \left(\displaystyle \sum_{k=1}^{3m} \sqrt k \cos\dfrac{k\pi}{3} \sin\ kx\right)^2 dx$
この動画を見る 
PAGE TOP