【本当に解はあるのか!?】整数:日本大学習志野高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【本当に解はあるのか!?】整数:日本大学習志野高等学校~全国入試問題解法

問題文全文(内容文):
3つの自然数$ x,y,z(x \lt y \lt z)$である.
$ x+y+z=20 $
$ xyz=60 $  満たす.

このとき, $ x=\Box,y=\Box,z=\Box $

日大習志野高校過去問
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#高校入試過去問(数学)#日本大学習志野高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
3つの自然数$ x,y,z(x \lt y \lt z)$である.
$ x+y+z=20 $
$ xyz=60 $  満たす.

このとき, $ x=\Box,y=\Box,z=\Box $

日大習志野高校過去問
投稿日:2023.10.18

<関連動画>

【高校受験対策/数学】死守70

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・数学 死守70

①$x^2-36y^2$

➁$(x+3)(x-4)-8$

③$(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$

④$x(x-6)=-4(x-2)$

⑤$3x^2-5x+1=0$

⑥$3a+b=10$

⑦$-6+9÷\frac{1}{4}$

⑧$x^2+xy$

⑨$5xy^2×7xy÷(-x)^2$

➉$\frac{5x-3y}{3}-\frac{3x-7y}{4}$

⑪$3x+4y=x+y=2$

⑫$(2\sqrt{10}-5)(\sqrt{10}+4)$

⑬$x^2-6x-18$

⑭$(x-5)^2-7(x-5)+12$

⑮$0.2(x-2)=x+1.2$

⑯$\frac{x-2}{4}+\frac{2-5x}{6}=1$
この動画を見る 

絶対答えが37になる計算

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
「絶対答えが37になる計算」について解説しています。
この動画を見る 

中2数学「同類項・式の加法と減法」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1
次の計算をしなさい.

(1)$4a-3b-a+5b$
(2)$x^2-3x+2x^2+5x$
(3)$3ab-2a-ab+a$
(4)$\dfrac{x}{6}+\dfrac{y}{3}+\dfrac{y}{4}-\dfrac{x}{9}$

例2
(1)$(4x-y)+(x+5y)$
(2)$(3x+7y)-(2x-5y)$
(3)$(2x^2+5x-1)-(3-4x^2+x)$
(4)
$\begin{array}{r}
3x-2y \\[0.5pt]
\underline{+\phantom{0}2x+5y}\\[-3pt]
\\[-3pt]
\end{array}$

(5)
$\begin{array}{r}
-2x+5y-4 \\[0.5pt]
\underline{-\phantom{0}-5x-3y+6}\\[-3pt]
\\[-3pt]
\end{array}$
この動画を見る 

【中2 数学】  中2-59  仮定と結論

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 仮定と結論
以下の問に答えよ
[ポイント] a=b、b=c ならば、a=c である。
仮定…①____、結論…②____
証明するとき、仮定は③____アイテム、結論は④____アイテム
◎仮定には下線、結論には波線を引こう!
⑤ △ ABC ≡ △ DEF ならば、AB=DEである。
⑥ 2 つの直線が平行ならば、錯角は等しい。
⑦ 芸能人に会えるならば、ベッキーに会う。
※図は動画内参照
この動画を見る 

高等学校入学試験予想問題:三重県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#1次関数#2次関数#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ -1+4\div \dfrac{2}{3}$
(2)$ 3(2a+5b)-(a+2b)$
(3)$ (x-2)(x+2)+(x-1)(x+4)$
(4)$ x^2+5x+3=0 $

$ \boxed{2}$
(1)点Pの座標は?
(2)y軸上に点Q,Qのy座標をt($ t \gt 4 $)とする.
Qを通り,x軸に平行な直線とb,mの交点をR,Sとする.
①t=6のとき,$ \triangle PRS $は?
②$ \triangle PRS $の面積が$ \triangle ABP $の5倍であるとき,tは?

$ \boxed{3}$
円周上にA,B,C,D,Eがある.
$AC=AE$,$\stackrel{\huge\frown}{BC}$=$\stackrel{\huge\frown}{DE}$であり,交点$ F,G$である.
(1)$ \triangle ABC \equiv \triangle AGE $を証明せよ.
(2)$ AB=4 $cm,$ AE=6$cm,$ DG=3 $cmのとき,
①$ AF=? $
②$ \triangle ABG $と$ \triangle CEF $の面積比を求めよ.
この動画を見る 
PAGE TOP