大阪府立大 整数問題 - 質問解決D.B.(データベース)

大阪府立大 整数問題

問題文全文(内容文):
$m,n$は整数であり,$0\leqq n\leqq m$とする.

①$3m^2+mn-2n^2$が素数となる($m,n$)
②$m^4-3m^2n^2-4n^4-6m^2-16n^2-16$が素数となる$(m,n)$

2019大阪府立大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は整数であり,$0\leqq n\leqq m$とする.

①$3m^2+mn-2n^2$が素数となる($m,n$)
②$m^4-3m^2n^2-4n^4-6m^2-16n^2-16$が素数となる$(m,n)$

2019大阪府立大過去問
投稿日:2020.07.22

<関連動画>

整数問題 関西大高

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$1 \times 2 \times 3 \times \cdots \times n$を1000で割り切れるような自然数nのうち最も小さいものは?

関西大学高等部
この動画を見る 

ちょっと難しいか...?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
32,7,105,98,64,606,73

この中から2つの整数を選ぶとその差が必ず6で割り切れるものがあることを説明せよ
この動画を見る 

ざ・見掛け倒し

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{10000}n^n$
$=1^1+2^2+3^3+・・・・・・9999^{9999}+10000^{10000}$を3で割った余りを求めよ.
この動画を見る 

2023高校入試解説15問目 3種類の4ケタの数 渋谷教育学園幕張 コメントに別解多数あり!!

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
1000~9999の4ケタの整数について2023のようにちょうど3種類の数字が用いられている整数は何個?
2023渋谷教育学園幕張高等学校
この動画を見る 

【ガチ良問】素数が絡んだ整数問題の難問です【数学】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
pを素数,kを自然数とする。
$12p^{2}+12p+1=k^{2}$を満たすようなpの値を求めよ。
この動画を見る 
PAGE TOP